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FINITE DEFORMATION: GENERAL THEORY

The notes on finite deformation have been divided into three parts:
e General theory (http://imechanica.org/node/538)
¢ Elasticity of rubber-like materials (http://imechanica.org/node/14146)
e Special cases (http://imechanica.org/node/5065)
The three parts can be read in any order.

DIVISION OF LABOR

A body is made of atoms. Each atom is made of electrons, protons and
neutrons. Each proton is made of... This kind of description is good for studying
the fundamental nature of matter, but not for many other purposes. We will not
go very far in life if we keep picturing a bridge as a pile of atoms. Instead, we will
develop a different description, called continuum mechanics. Continuum
mechanics studies how a force causes a body to deform. Continuum mechanics is
effective whenever we can identify two widely separated length scales.

Two length scales. The deformation of the body is in general
inhomogeneous—that is, the amount of deformation varies from one part of the
body to another part. When we examine the deformation of a body, we can
identify two length scales:

e length scale over which the macroscopic variation of deformation occurs

¢ length scale over which the microscopic process of deformation occurs.
For example, when a rubber eraser is bent, the macroscopic deformation varies
over a length scaled with the thickness of the eraser (several millimeters). The
rubber is a network of molecular chains. The microscopic process of deformation
occurs over the length scaled with the length of an individual molecular chain
(several nanometers).

Representative elementary volume. In many applications, the two
length scales are widely separated. If they are, we can describe the behavior of
the material by using a volume much larger than the size characteristic of the
microscopic process of deformation, but much smaller than the size characteristic
of the macroscopic deformation. Such a volume is known as a representative
elementary volume (REV).

In the rubber eraser, for example, the microscopic process is the thermal
motion of individual polymer chains, the body is the whole eraser, and the REV
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can be a small piece of the eraser. This piece is still large compared to individual
polymer chains.

As another example, consider an airplane wing made of aluminum. The
microscopic process can be activities of dislocations in aluminum, the body can
be the entire wing, and the REV can be a tensile specimen of the aluminum. The
tensile specimen is much smaller than the wing, but much larger than the
individual grains of the aluminum.

The size of REV should be selected well between the two lengths scales. If
a volume is too small, the volume cannot be treated as a continuum. If a volume
is too large, the shape of the body affects the behavior of the volume.

Exercise. Describe the separation of length scales in each of the three
types of materials: glasses, metals, and fiber-reinforced composites. In each type,
how large does the representative elementary volume need to be?

Exercise. Continuum mechanics is sometimes applied to analyze living
cells. Can we really separate the two length scales? What do we mean by
representative elementary volume?

When a body deforms, does each small piece preserve its
identity? We have tacitly assumed that, when a body deforms, each small piece
in the body preserves its identity. Whether this assumption is valid can be
determined by experiments. For example, we can paint a grid on the body. After
deformation, if the grid is distorted but remains intact, then we say that the
deformation preserves the identity of each small piece. If, however, after the
deformation the grid disintegrates, we should not assume that the deformation
preserves the identity of each small piece.

Whether a deformation of the body preserves the identity of a small piece
in the body depends on the size of the piece and the time scale over which we
observe it. A rubber, for example, consists of crosslinked long-chain molecules.
If our grid is over a size much larger than the individual molecular chains, then
deformation will not cause the grid to disintegrate. By contrast, a liquid consists
of molecules that can change neighbors. A grid painted on a body of liquid, no
matter how coarse the grid is, will disintegrate over a long enough time. Similar
remarks may be made for metals undergoing plastic deformation. Also, in many
situations, the body will grow over time. Examples include growth of cells in a
tissue, and growth of thin films when atoms diffuse into the films. The combined
growth and deformation clearly does not preserve the identity of each small piece
of the body.

In these notes, we will assume that the identity of each small piece is

August 31, 2017 Finite Deformation: General Theory 2



For the latest version of this document see http://imechanica.org/node/538 Z. Suo

preserved as the body deforms.

Division of labor. To analyze the inhomogeneous deformation in the
body, the continuum theory regards the body as a sum of many pieces. Each
piece evolves in time through a sequence of homogeneous deformations. All the
pieces are then put together to represent the inhomogeneous deformation of the
entire body. The division of labor results in two levels of analysis:

e Homogeneous deformation of a piece.
e Inhomogeneous deformation of a body.

Inhomogeneous
deformation

Homogeneous
deformation

Each level of analysis requires three ingredients:
e Geometry of deformation
e Balance of forces

e Model of material
Continuum mechanics expresses the three ingredients into mathematical forms,
which you will learn in this course.
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HOMOGENEOUS DEFORMATION

Stretch of a rod. A rod deforms from one state to another state. The
two states are called, respectively, the reference state and the current state. The
length of the rod is L in the reference state, and [ in the current state. The ratio of
the two lengths defines the stretch of the rod:

a=L
L
Whenever convenient, we follow the convention of using the uppercase of a letter
to label a quantity in the reference state, and using the lowercase of the same
letter to label the quantity in the current state.

L l
reference state current state

The above definition uses the lengths of the entire rod in the two states,
and is valid even when the deformation of the rod is inhomogeneous. How do we
find out if the deformation of the rod is homogeneous or inhomogeneous? We
mark two material particles along the axis of the rod. We measure the distance Y
between the two particles when the rod is in the reference state, and then
measure the distance y between the two particles when the rod is in the current
state. If the ratio y/Y is the same for any choices of the two material particles,
the deformation of the rod is homogeneous.

We write

y=AY.
The deformation of the rod is said to be homogeneous if A is the same for any
choices of the two material particles along the axis of the rod.

o :
reference state current state

We can also mark equally spaced and parallel lines on the surface of the
undeformed rod. When we stretch the rod, the spacing between any two lines
increases, but all lines are still equally spaced and parallel. Stretching of the rod
causes homogenous deformation.

If we bend the rod, the lines will no longer be parallel. Bending of the rod
causes inhomogeneous deformation.
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Deformation of a body. Now consider a body undergoing a general
state of homogenous deformation in the three-dimensional space. When the
body deforms from a reference state to a current state, how do we find out if the
deformation is homogeneous?

A homogeneous deformation of the body is described as follows. Consider
a set of material particles in the body. When the body is in the reference state,
the set of material particles forms three families of parallel, uniformly-spaced
lines. When the body is in the current state, the set of material particles still
forms three families of parallel, uniformly-spaced lines. The homogeneous
deformation may change the spacing between, and the orientation of, each family
of the straight lines.

Deformation gradient. We call each small part of the body a material
particle, and each small part of the space a place. As the body deforms, each
material particle moves from one place to another place in the space, forming a
trajectory.

Each place in the space has three coordinates. When the body is in the
reference state, a material particle occupies a place in the space, and the
coordinates of the place are written X. When the body is in the current state, the
same material particle occupies a different place in space, and the coordinates of
the space are written x.

We mark two material particles in the body. When the body is in the

reference state, the two material particles are at places X and X, and they are
the two ends of a vector, X~X . When the body is in the current state, the same
two material particles are at places x_ and x, and they are the two ends of

another vector, x—x_. The deformation of the body maps the material vector in
the reference state to the material vector in the current state:
x-x,=F(X-X ).

The operator F is known as the deformation gradient. The deformation of the
body is homogeneous if F is a linear operator, and is the same for any choices of
the two material particles. These words are too abstract, and we will describe
more in the following pages.

reference state current state
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The above expression calculates the place x of any material particle when
the body is in the current state, provided we know (i) the place X of the same

material particle when the body is in the reference state, (ii) the coordinate X of
one particular material particle when the body is in the reference state, (iii) the
coordinate x  of this material particle when the body is in the current state, and
(iv) the deformation gradient F.

Translation, rotation and stretch. When a material particle moves

from a place x_ in the reference state to a place X in the current state, the

displacement of the material particle is u =x_-X_ . When another material

particle moves from a place x in the reference state to a place X in the current
state, the displacement of the material particle is u=x-X.

reference state current state

Rewrite X -x_ =F(X—XO) as
u-u, -(F-I)(X-X, ),

where I is the identity tensor. In the special case when the homogeneous
deformation of the body is a rigid-body translation, the deformation gradient is
the identity operator, F=I, and the two material particles have an identical

displacement, u=u,_ .

In the general case, however, the homogeneous deformation also rotates
and stretches the body, F=I, and the two material particles have different

displacements, u#u_. The homogeneous deformation consists of three types:
translation, rotation and stretch. The deformation translates a particular

material particle from the place X in the reference state to the place x_ in the

August 31, 2017 Finite Deformation: General Theory 6



For the latest version of this document see http://imechanica.org/node/538 Z. Suo

current state. After this translation, with the position of the particular material
particle fixed at the place x_ in space, we stretch and rotate the body using F.

We will describe stretch and rotation later.

Material segment. When the body is in the reference state, we mark a
set of material particles that forms a segment of a straight line. As the body
undergoes a homogeneous deformation, the set of material particles behaves like
a rod: it translates, rotates and stretches. The homogeneous deformation of the
body, however, does not bend the segment. When the body is in the current state,
the same set of material particles still forms a segment of a straight line.

We represent the set of material particles by a vector Y in the reference
state, and by a vector y in the current state. For example, consider the two
material particles. When the body is in the reference state, the two material

particles are at places X and X, and they are the two ends of the vector,
Y=X-X_. When the body is in the current state, the same two material
particles are at the places x_ and x, and they are the two ends of another vector,
y=X-X_.
The above geometric picture corresponds the algebraic formula:
y= F(Y) .
Thus, the deformation gradient maps a material segment in the reference state to

the same material segment in the current state.
Compare the two definitions, [= AL and y = F(Y) . We replace the length

L of the rod in the reference state with the vector Y, replace the length [ of the rod
in the current state with the vector y, and replace the stretch A of the rod is with
the operator F. Just as the stretch is a measure of a homogeneous deformation of

a rod, the deformation gradient is a measure of a homogeneous deformation of a
body.

Deformation gradient is a linear map. Let us study the linear
algebra of the material segment and deformation gradient. When a body
undergoes a homogeneous deformation, the material segments in the body in the
reference state form one vector space, and the material segments in the body in
the current state form another vector space.

Recall the defining attributes of a linear map F that maps one vector
space to another vector space:

(1) F(aY) = aF(Y) for every scalar o and every vector Y.
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(ii) F(Y1+Y2)=F(Yl)+F(Y2) for any two vectors Y, and Y, .

These attributes are characteristic of a homogeneous deformation.

We interpret attribute (i) as follows. In the reference state, Y is a set of
material particles that forms a straight segment, and «Y is another set of
material particles that also forms a straight segment. The two segments are
parallel, and the length of the segment aY is a times that of the segment Y. In
the current state, the two sets of material particles still form two straight

segments: oneis y = F(Y) , and the other is in the same direction as y, and is «
times long.

We interpret attribute (ii) as follows. In the reference state, the three
vectors Y , Y, and Y +Y, are three sets of material particles that form a
triangle. In the current states, the same three sets of material particles form
another triangle. The sides of the triangle are the three vectors F(Yl) , F(Y )

and F(Y,+Y,).

reference state
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Components of a vector (i.e., a material segment). A vector like
Y represents a physical object, in this case a material segment in the reference
state. All such vectors form a three-dimensional vector space. We can choose
three linearly independent vectors in the vector space as a basis. Any vector in
the space is a linear combination of the three base vectors. The object—the
vector—is independent of the choice of the basis. The components of the vectors,
however, do depend on the choice of the basis. When a new basis is chosen, the
components of the vectors transform. You have studied rules of transformation in
linear algebra.

When the body is in the reference state, a set of material particles forms a

parallelepiped, with the three edges represented by vectors e , e, and e,. When
the body is in the current state, the same set of material particles forms another
parallelepiped, with three edges represented by vectors F(el) , F(eQ) and F(es) .

When the body is in the reference state, consider a particular material
particle. Using this material particle as the starting point we can form many
straight segments of material particles. Each segment is a vector, and all such

segments form a vector space. Let three segments e , e, and e, be a basis of the

vector space. Any segment Y is a linear combination of the three base vectors:
Y=Ye +Ye, +Ye,.

The three quantities Y, , Y, and Y, are the components of the vector Y relative

to the basis e , e, and e,. This algebraic formula has a familiar geometric
interpretation. The segment Y is a diagonal of a parallelepiped, while the vectors
Ye , Ye, and Y e, are the edges of the parallelepiped.

We can write the above equation in shorthand:
Y=Ye,.
This way of writing follows a convention: summation is implied over the
repeated index.

In the current state, the vector y is also a linear combination of the three
base vectors:

y=ye +ye, +ye..
The three quantities y,, y, and y, are the components of the vector y with

respect to the basis e , e, and e,. Following the summation convention, we

write the above equation as
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Y= yiei .
In the above, we have used the same basis for both the reference state and
the current state. This practice will force us to abandon a convention we have
adopted. While the uppercase Y and the lower case y represent the same set of

material particles in the reference and the current states, the vector Y e and

y.e, no longer represent the same set of material particles. The homogeneous
deformation of the body transforms a parallelepiped in the reference state into
another parallelepiped in the current state. Indeed, Y e represents the set of

material particles that forms one edge of the parallelepiped when the body is in
the reference state. The deformation F will map this set of material particles to

YIF(el) , which is in general different from y e, .

Components of the deformation gradient. Similarly, the
deformation gradient F represents a deformation, and is independent of the
choice of the basis. The components of the deformation gradient do depend on
the choice of the basis. When a new basis is chosen, the components of the
deformation gradient transform. Vectors and linear operators are examples of a
more general mathematical object: tensor.

Consider a set of material particles. In the reference state, the set of

material particles lies on the base vector e . In the current state, the same set of

material particles still lies on a straight segment, but the deformation causes the
segment to stretch and rotate. By the definition of the deformation gradient F, in
the current state, the set of material particles forms a segment represented by a

vector F(el) . We also use e, e, and e, as the basis for the vector space of the
material segments in the current state. The vector F(el) is also a linear
combination of the three base vectors. Write

F(e,)-F.e +Fe +Fe

11 21 2 31 3"

The three quantities F,, F, and F, are the components of the vector F(el) with
respect to the basis e , e, and e . Similarly, we can also consider the

deformation of the material particles that lie on the base vectors e, and e,. We

write
Fle,)-Fe +Fe, +F.e,
32 3
Fle,)-Fe +Fe,+F e
3 1 23 2 33 3°
Following the summation convention, we write the above three equations
as
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The nine quantities F, are the components of the deformation gradient relative
to the basis e , e, and e, . To remind us of the distinct roles played by the two

indices, we write the first index in lowercase, and the second index in uppercase.
The nine components of the deformation gradient can be listed in a matrix:

F, F, K

F, F, K,

F_ F_F
31 T3z a3

As a convention, the first index indicates the row, and the second the column.
The first column of the matrix, F, , are the three components of an edge vector of

the parallelepiped, F(el). Similarly, the second and third columns of the matrix

are the components of the other two edge vectors of the parallelepiped. In general,
the matrix of the deformation gradient is not symmetric.

Write linear map using components. Write the linear map as
y=FY

-F(Ye +Ye +Ye )
~YF(e,)+Y,F(e,)+Y,F(e,)
We then write F(el) , F(eQ) and F(es) as linear combinations of the base

vectors, so that
y=(FY,+F,Y,+FY e,

13 3

+(FY,+F,Y,+F,Y, e,

23 3
+(FY,+F Y, +FY,)e
3171 327 2 33 3/ 3

Consequently, the three components of the vector y are
y,=FY,+FY,+FY,
Y, =E Y +F Y, +F Y,
y,-FY,+EY,+F,

Using the summation convention, we write the above three equations as

y=F/Y,.
Using these components, we write the linear relation y =FY as
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Y, F,FE, F, | Y

2 13 1
Y, |=| o F. E, | L.
y3 F;},l F;,Q ‘Fss YS

We have written the linear map in several equivalent ways: in boldfaced letters
y =FY , in longhand, in shorthand and using a matrix.

Inner-product space. So far we have only used the property of a vector
space without invoking length and angle. Our space, however, does equip with
the inner product. So we can speak of the distance between two material
particles, and the angle between two lines of material particles.

F(e;)

3

reference state current state

When the body is in the reference state, we choose a set of material
particles that forms a unit cube. The three edges of the unit cube form an

orthonormal basis, e , e, and e,. When the body is in the current state, the

same set of material particles forms a parallelepiped. The deformation gradient F
maps the three base vectors to the three edges of the parallelepiped, F(el),

F(eQ) and F(eS).

Exercise. A body undergoes a shear deformation. Mark a set of material
particles in the body. When the body is in the reference state, the set of material
particles forms a unit cube. When the body is in the current state, the same set of
material particle forms a parallelepiped, as shown in the figure. The dimension
normal to the paper (not shown) remains unchanged. Write the deformation
gradient for this deformation.

reference state current state
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Exercise. A rectangular block deforms into another rectangular block.
In the reference state, the lengths of the edges of the rectangular block are of

lengths L , L, and L . In the current state, the corresponding edges of the

rectangular block are of lengths [, [, and [,. The rectangular block in the two

states has the same orientation. Write the deformation gradients for the
following situations.
(a) The two blocks have the same orientation.

(b) The block in the current state is rotated 9o degrees around the axis of L, .

(c) The block in the current state is rotated 30 degrees around the axis of L, .

Exercise. In the reference state, a rectangular block of a material has
edges of lengths 1, 2 and 3. We set coordinates in the direction of the three edges
of the block. The block undergoes a homogeneous deformation and becomes a
parallelepiped. The homogeneous deformation is characterized by the
deformation gradient

F=

== N
N BN
AN =

Calculate the vectors formed by the three edges of the parallelepiped. Calculate
the lengths of, and angles between, the three edges of the parallelepiped.

Rigid-body rotation does not affect the state of matter. Green
deformation tensor. The unit cube deforms into the parallelepiped by
changing shape, size, and orientation. Only the shape and size of the
parallelepiped affect the state of matter. Once the shape and the size of the
parallelepiped is fixed, the state of matter is fixed, and is unaffected by any rigid-
body rotation of the parallelepiped.

The shape and the size of the parallelepiped are fully specified by the
lengths of, and the angles between, the three edges of the parallelepiped. The
three lengths and the three angles by themselves do not form a tensor. The six
quantities, however, are related to the six inner products of the three edge vectors.

The inner product of two edge vectors F(e K) and F(e L) of the parallelepiped is

designated as C,; :

Cu=(r(e, ) rfe, )
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The six quantities C,; together form a tensor, known as the Green deformation
tensor. This tensor is positive-definite and symmetric.
F

2K’

The vector F(eK) has three components F F . The vector F(eL)

1K’
F

2L’
Co =F B +EF, + F31<FgL .
Using the summation convention, we write this inner products as
C,, =F,F,.
The above expression is also written as
C=F'F.
The components of the tensor form a matrix:
Cn C12 C13
C21 C22 C23

C31 C32 C33

has three components F

' F,F,, - The inner product of the two vectors is

This matrix is symmetric. Each diagonal element of the matrix is the square of
the length of an edge of the parallelepiped, and each off-diagonal element of the
matrix is related to the angle between two edges of the parallelepiped.

Both F and C measure a homogeneous deformation of a body. The
deformation gradient F includes both the rotation and the distortion of the body.
By contrast, the Green deformation tensor C measures the distortion only, and is
unchanged when the body undergoes any rotation.

Exercise. Show that the Green deformation tensor is symmetric and
positive-definite.

Exercise. A body undergoes a homogeneous deformation specified by a
deformation gradient. This deformation maps material particles in a unit cube in
the reference state to a parallelepiped in the current state. The shape of the
parallelepiped depends on the orientation of the unit cube. Let the lengths of the

three edges of the parallelepiped be [, [, and [,. Show that the sum I+ +[® is
independent of the orientation of the unit cube.
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ADDITIONAL RESULTS OF HOMOGENEOUS DEFORMATION

A line of material particles. A body undergoes a homogeneous
deformation F from a reference state to a current state. Consider a set of
material particles in the body. When the body is in the reference state, the set of
material particles forms a segment of a straight line, of length L and in the
direction of unit vector M. When the body is in the current state, the set of
material particles remains as a segment of a straight line, but the segment
stretches and rotates: the segment is of length [ and in the direction of unit
vector m.

The deformation gradient F maps the segment in the reference state to
the segment in the current state:

lm -F(LM).
Recall the definition of the stretch of the line of material particles, A=1/L, and

we write the above equation as

Am=FM.
Given a deformation gradient F, and given the direction M of a line of material
particles in the reference state, this equation calculates the stretch A and the
direction m of the line of material particles in the current state.

Exercise. Show that
2*=(FM) (FM)=M'CM.

Exercise. The inner product M-m gives the cosine of the angle between
the two vectors—that is, the inner product tells us how much the deformation of
the body rotates the line of material particles. Show that this inner product is
given by
_M'FM

P

M-m

Exercise. A body undergoes a homogeneous deformation described by
the deformation gradient

[l SN
N AN
A~ N -

Consider a set of material particles that forms a segment of a straight line. When
the body is in the reference state, the material particles at the two ends of the
segment are at two points (0,0,0) and (2,3,6). Calculate the stretch and the
direction of the segment when the body is in the current state.
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Two lines of material particles. Recall the definition of the
engineering shear strain. Consider two sets of material particles. In the
reference state, the two sets of material particles form two orthogonal vectors. In
the current state, the two sets of material particles still form two vectors, but they
are, in general, no longer orthogonal to each other. Let the angle between the two

lines of material particles in the current state be z_ y. The angle ¥ is defined as
2

the shear strain.

M

reference state current state

Consider two sets of material particles. In the reference state, one set of
material particles forms a unit vector M, and the other set of material particles
forms a unit vector N ; the two vectors are orthogonal. After the body undergoes

a homogeneous deformation F, the two sets of material particles stretch by 4,
and A, and are in the directions of two vectors m and n. Each set of material
particles is linearly mapped by the deformation:

J,,m=FM,

A n=-FN.
Taking inner products of the vectors, we obtain that

A Am'n=(FM) (FN).

On the left-hand side, the inner product gives the cosine of the angle between the

T . .
two vectors, m'n = cos(—— y) =siny. Consequently, the above expression can be
2

written as
(FM) (FN)
A’MA'N '

Given the directions of two orthogonal lines of material particles in the reference

siny =
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state, M and N, and given the deformation gradient F, the above equation
calculates the shear strain associated with the two lines of material particles in
the current state.

Exercise. Show that

M'CN

ﬂ‘MAIN '
This result confirms that the angle between two lines of material particles do not
change when the body undergoes a rigid-body rotation.

siny =

Exercise. A body undergoes a homogeneous deformation described by
the deformation gradient

1
2
4

[l SN
N B~N

Consider two sets of material particles. When the body is in the reference state,
one set of material particles forms a straight line passing through two points
(0,0,0) and (2, 3, 6), and the other set of material particles forms a straight line
passing through two points (0,0,0) and (-6, -2, 3). Calculate the angle between
the two lines of material particles when the body is in the current state.

A volume of material particles. Once again consider a homogeneous
deformation F that changes a unit cube to a parallelepiped. Let the three edges of
the parallelepiped be the vectors a, b and ¢. The volume of the parallelepiped is

(a X b) -¢. Recall that the three vectors are the columns of the matrix F. Further

recall that detF=(axb)-c. Consequently, the volume of the parallelepiped is

detF.

We next generalize the above result to a homogeneous deformation of a
body of any shape. The body occupies a region of volume of V in the reference
state, and occupies another region of volume v in the current state. The two
volumes are related as

v=VdetF.
Thus, the deformation gradient is expected to obey detF>o0. The ratio of the
volumes in the two states is often written in shorthand as J =detF.

Inverse map. A linear map F is singular when detF=0. A theorem in
linear algebra says that, if and only if the map is nonsingular, detF =0, the linear

map can be inverted. Write the inverse of F as F'. Consider a set of material
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particles in the body. When the body is in the current state, the set of material
particles forms a vector y. When the body is in the reference state, the set of
material particles forms a vector Y. The two vectors relate to each other by the
maps:

y-FY,

Y-F'(y).

In general, we require that the deformation gradient be nonsingular.

A plane of material particles. Consider a set of material particles. In
the reference state, the set of material particles lies in a region in a plane, unit
normal N and area A. In the current state, the same set of martial particles is lies
in a region in another plane, unit normal n and area a. The deformation maps
the same set of material particles from one region in the reference state to the
other region in the current state.

The body may undergo a shear deformation relative to the plane.
Consider a line of material particles. When the body is in the reference state, the
line of material particles is normal to the plane of material particle. When the
body is in the current state, the line of material particles may no longer be normal
to the plane of material particles. Consequently, when the body shears relative to
the plane, the two normal directions N and n consist of two distinct sets of
material particles. The use of the uppercase and lowercase of the same letter is
an exception to our convention.

We want to relate n and a to N and A. Define area vectors a=an and
A = AN. Consider a tilted cone with the plane as the base, and an arbitrary point
in space as the apex. Pick a material particle in the plane. Consider the segment
of the line of material particles from the apex to the point. Denote the segment
by vector Y when the body is in the reference state, and by y when the body is in
the current state. The volume of the cone is V=Y-A /3 in the reference state,

and is v=y-a /3 in the current state. Recall that y=FY and v=JV, so that

Y'Fra=JY"A
This expression equates two scalars. Each scalar is an inner product of one vector
and another vector Y. Because the equation holds for any arbitrary pick of the
material particle in the base of the cone, the equation must hold for arbitrary
vector Y. Consequently, the above equation implies an equation between two
vectors:

F'a=JA.

This relation is known as the formula of Nanson. In terms of components, this
formula is

an.F, =JAN, .
When the deformation gradient is known, this equation can be used to calculate
n and a in terms of N and A.

Exercise. A body undergoes a homogeneous deformation described by
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the deformation gradient

== N
N BN
N

In the reference state, a set of material particles lies on a plane, within a region of
unit area; the unit vector normal to the plane is (2/7, 3/7, 6/7). The homogeneous
deformation moves the same set of material particles to places that lie within a
region of some other shape, on a plane of some other direction. Calculate the
area of the region and the unit vector normal to the plane in the current state.

Principal directions of a deformation. When a rod is pulled, it
elongates in the axial direction and contracts in the two transverse directions.
Consider a set of material particles in the rod. When the rod is in the reference
state, the set of material particles form a unit cube with edges in the axial and
transverse directions of the rod. When the rod is in the current state, the same
set of material particles forms a rectangular block.

Now consider another set of material particles. When the rod is in the
reference state, the set of material particles forms a unit cube with edges not in
the axial and transverse directions of the rod. When the rod is in the current
state, the same set of material particles forms a parallelepiped.

ME

reference state current state

As a further example, consider a body undergoing a shear deformation.
Consider a set of material particles in the body. When the body is in the
reference state, the set of material particles forms a unit cube. When the body is
in the current state, the same set of material particles forms a parallelepiped.

Now consider another set of material particles. When the body is in the
reference state, the set of material particles forms a unit cube oriented in a
particular direction, such that, when the body is in the current state, the same set
of material particles forms a rectangular block.

reference state current state
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We now generalize these observations to a body undergoing an arbitrary
homogeneous deformation F. Consider a set of material particles. When the
body is in the reference state, the set of material particles forms a unit cube.
When the body is in the current state, the same set of material particles forms a
parallelepiped. The shape of the parallelepiped in the current state depends on
the orientation of the unit cube in the reference state.

For a particular choice of the orientation of the unit cube, however, the
deformed shape in the current state can be a rectangular block. The deformation
stretches the unit cube into a rectangular block, and also rotates the rectangular
block. The directions of the three edges of the unit cube in the reference state are
called the principal directions of the deformation. The lengths of the three edges
of the rectangular block in the current state are called the principal stretches. We
next use the deformation gradient F to calculate the principal directions and

principle stretches, as well as the rotation between the unit cube and rectangular
block.

Exercise. According to a theorem in linear algebra, a symmetric
operator has three real eigenvalues. Furthermore, if the eigenvalues are distinct,
the corresponding eigenvectors are orthogonal to one another. Prove this
theorem. What happens if the three eigenvalues are not distinct?

Exercise. A body undergoes a homogeneous deformation F from a
reference state to a current state. The deformation gradient F maps a straight
line of material particles in the reference state to a straight line in the current
state. As the body deforms, the line of material particles rotate and stretch. The
stretch of the line of material particles depends on the orientation of the line in
the reference state. Determine the orientation of the straight line that maximize
or minimize the stretch.

Eigenvectors of the Green deformation tensor. The Green
deformation tensor C is symmetric and positive-definite. According to a theorem
in linear algebra, a symmetric and positive-definite matrix has three orthogonal
eigenvectors, along with three real and positive eigenvalues.

Let M be the unit vector in the direction of an eigenvector of C, and a be
the associated eigenvalue. According to the definition of the eigenvalue and
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eigenvectors, we write
CM=aoM.
The deformation causes the line of material particles to stretch by 4,
which is calculated from
X =M'CM.
A comparison of the above two expressions gives that
AM=a.
The eigenvalue of C is the principal stretch squared.

Consider two lines of material particles. When the body is in the
reference state, the two lines are orthogonal. When the body is in the current
state, in general, the two lines are not orthogonal. The change in the angle
between the two lines measures the shear. However, if in the reference state the
two lines of material particles are in the directions of two orthogonal eigenvectors,
in the current state the two lines of material particles will remain orthogonal.

This property can be verified as follows. Let M, and M, be the unit vectors in

the directions of two orthogonal eigenvectors of C. Let 4 and A, be the two
principal stretches. In the current state, the two lines of material particles are in

the directions of unit vectors m and m,. We know that
Jm =FM_,
J,m_=FM,.
The inner product of the two vectors gives that
Azm, -m, =M, (CM,).
Because M, is an eigenvector, CM, =AM, . Recall that M and M, are

orthogonal, M -M, =0, so that m -m_ =0. The deformation rotates both lines

of material particles, but keeps the two lines orthogonal to each other.

Here is how we choose a particular set of material particles. When the
body is in the reference state, the set of material particles form a unit cube whose
edges are in the directions of three orthogonal eigenvectors of the deformation
tensor C. When the body is in the current state, the same set of material particles
forms a rectangular block, with the three edges of the length of the principal
stretches. The rectangular block may be rotated from the unit cube.

Exercise. A body undergoes a homogeneous deformation described by
the deformation gradient
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1 2 0
F=| 3 8 o
0O 0 3

e Calculate the principal directions of the deformation in the reference state

e (Calculate the principal stretches.
Calculate the principal directions of the deformation in the current state.

Exercise. A body undergoes a shear deformation. Consider a set of
material particles in the body. When the body is in the reference state, the set of
material particles is a unit cube. When the body is in the current state, the same
set of material particle is a parallelepiped, as shown in the figure. The dimension
normal to the paper (not shown) remains unchanged. Calculate the principal
directions and principal stretches.

reference state current state

Represent a symmetric operator in terms of its eigenvectors
and eigenvalues. Recall a procedure in linear algebra. Let the orthonormal

eigenvectors of a symmetric operator C be M ,M,,M, and the corresponding

eigenvalues be a,a,,a, . Write
G-[M,,M,, M|,

and

R

[

(@l
]
o o
o KR ©
KN o o

The operator C can be represented by
C=-GCG'.
We can verify this representation as follows. Let Y be a vector. Because
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M ,M,,M, are linearly independent, we can write any vector Y as a linear
combination
Y=YM, +Y,M, +Y M.
Here Y,Y,,Y, are components of the vector Y in the three directions M M, M,.
Note that
CY=YoM +Y aM, + YgocSM3 .
Also note that
(GCG™)Y -Y,a M, +Y,a,M, +Y,a, M, .

A comparison of the above two expressions confirms that C = GCG” .

Stretch tensor. The Green deformation tensor C is a symmetric,
positive-definite tensor. Define another symmetric, positive-definite tensor U by

C=U?
The tensor U is called the stretch tensor.
Given C, we can calculate the stretch tensor U as follows. Let the

orthonormal eigenvectors of a symmetric operator C be M ,M,,M_ and the

corresponding eigenvalues be a,a,,a, . Write

G-[M,,M,, M|,
and
a 0 O
C=| 0 a o
O O a,

The operator C can be represented by
C=GCG".
Because C is positive-definite, we define three positive roots (the stretches)

A =\Ja,A = a, ,)L3 =,/a, . Wecan form another diagonal matrix:

~

[

0}
A’z

U

I
© O

(0)

W O O

The stretch tensor is given by
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U-GUG".
We can readily confirm that U is symmetric and positive-definite, and C=U>.
Both C and U are symmetric and positive-definite. The two operators

have the same eigenvectors. Each eigenvalue of C is a principal stretch squared.
Each eigenvalue of U is a principal stretch.

Polar decomposition. Here is yet another theorem in linear algebra.
Let F be a linear operator. The operator is nonsingular, i.e., detF#0. The
linear operator can be written as a product:

F=RU,

where R is an orthogonal operator, satisfying R"R =1, and U is a symmetric,
positive-definite operator. Writing a linear operator in this way is known as polar
decomposition.

The proof of this theorem is straightforward. Because F is nonsingular,
the product F'F is a symmetric, positive-definite operator. Thus, we can find a
symmetric, positive-definite operator U to satisfy F'F=U?. Furthermore, we

can confirm that FU™ is an orthogonal operator, namely,

(FU") (FU")=(UF")(FU)-U"U"U -1

Exercise. A body undergoes a homogeneous deformation described by
the deformation gradient

1 2 0
F=| 3 8 o
0O 0 3
Calculate U and R.
F

/r N

A
<> stretch rotate °
1 1 > Mg >

1 U R M
7L2 7\«
M 2

reference state intermediate state current state
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Geometric interpretation of polar decomposition. Consider a set
of material particles in the body. When the body is in the reference state, the set
of material particles forms a unit cube, whose three edges are in the directions of
the eigenvectors of the deformation tensor C. In the current state, the block
becomes a rectangular block, whose three edges are of the length of the principal
stretches. The rectangular block may be rotated from the unit cube.

The multiplication F=RU means two linear maps in succession. For
example, start with a set of material particles that forms a unit cube in the
reference state, with the edges of the cube oriented in the directions of the
eigenvectors of U.

The operator U stretches in the unit cube into a rectangular block in an
intermediate state. Because the three edges of the unit cube are in the directions
of the eigenvectors of U, the rectangular block in the intermediate state does not
rotate relative to the unit cube in the reference state.

The operator R then rotates the rectangular block in the intermediate
state to the rectangular block in the current state. Because R is a rotation
operator, the rectangular block is rotated as a rigid body, with no stretch.

Exercise. A body undergoes a homogeneous deformation F from a
reference state to a current state. Mark a set of material particles in the body.
When the body is in the reference state, the set of material particles lies on the
surface of a unit sphere. What do the operators U, R and F do to this set of
material particles?

Exercise. Show that a non-singular linear operator F can be written as
F=VR,
where R is an orthogonal operator, and V a symmetric operator. When F is the
deformation gradient, interpret the roles of V and R in geometric terms. V is
known as the left stretch tensor.

Displacement gradient. When a body undergoes a homogeneous
deformation, a material particle in the body moves from position X in the
reference state to position x in the current state. The displacement of the
material particle is

u=x-X.
If the body undergoes a rigid-body translation, all material particles in the body
move by the same displacement. If the body also rotates and stretches, however,
different material particles in the body can move by different displacements.

Consider another material particle, whose position is X in the reference state
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and is x  in the current state. The displacement of this material particle is

u=x -X_ .
Define a new tensor H by

u-u -H(X-X )
The tensor H is called the displacement gradient. Note that Y=X-X_ and
y=X-X_. Acomparison with y = F(Y) gives that
H=F-1I.

Small-strain approximation.  Recall that C=F"F. We can express
the Green deformation tensor in terms of the displacement gradient:

C=H+H"+H'H+I.
When all the components of the displacement gradient is small, H, <<1, we can
neglect the quadratic term, and write
C=H+H"+I.

Recall that in the small-strain approximation, the strain relates to the
displacement gradient as

e=§(H+HT).

Except for the factor 2 and the identity tensor, the above two expressions
coincide. In finite deformation, the Green deformation tensor C is a measure of
deformation unaffected by rigid-body rotation. The small-strain approximation
is valid when all components of the displacement gradient are small.

Lagrange strain. A quantity slightly different from the Green
deformation tensor C is defined by

1
E=—(C-I),
'(c-1)

where I is the identity tensor. The tensor E is called the Lagrange strain.
We can relate the general definition of the Lagrange strain to that

introduced in describing a tensile bar (http://imechanica.org/node/5065).
When the length of the bar increases from L to [, the stretch is defined by A=1/L,

and the Lagrange strain is defined as

77=%(/12—1).

It was hard to motivate this definition in one dimension. In three dimensions,
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this definition can be motivated as follows.

A body undergoes a homogeneous deformation specified by the
deformation gradient F. Consider a set of material particles. In the reference
state, the set of material particles forms a segment of a straight line, length L and
direction M. In the current state, the same set of material particles still form a
segment of a straight line, length [ and direction m. The two segments are
related by Im = LFM . The inner product of the vector gives [> = ’M"CM. The
change in the length of the segments can be calculated from

-1 =2I’'M"EM
The homogeneous deformation causes the line of material particles to stretch by
A=1/L. Consequently, the Lagrange strain of the element in direction M is
given by
n=M"EM.
Thus, once we know the tensor E, we can calculate the Lagrange strain 7 of a line
of material particles in any direction M.
The Lagrange strain relates to the displacement gradient as

E=1(H+HT+HTH).
2

When all the components of the displacement gradient is small, H, <<1, we can

neglect the quadratic term, and the Lagrange strain coincides with the small-
strain approximation:

e=§(H+HT).
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STRESS

Nominal stress. Subject to an axial force, the rod changes its length and
cross-sectional area. The nominal stress is defined by
forceincurrentstate

nominalstress = » .
areainreferencestate

Let A be the cross-sectional area of the rod in the reference state, which is subject

to no force. Let P be the axial force in the current state. The nominal stress is
defined by

P -
A é .ép

reference state current state

We now generalize this definition to a body of an arbitrary shape
undergoing a homogeneous deformation of an arbitrary type. Consider a set of
material particles. When the body is in the reference state, the set of material
particles lies on a plane of unit vector N, in a region of area A. The vector AN
represents the planar region as a vector, written as A = AN. When the body is in
the current state, the same set of material particles forms another planar region,
and acting on the planar region is a force P.

N

reference state current state
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Define the nominal stress as an operator s that maps the area vector A in
the reference state to the force P in the current state:

P-s(A).
The shape of the region does not affect this definition. The nominal stress is also
known as the first Piola-Kirchhoff stress.

Nominal stress is a linear operator. Let us see why the stress should
be a linear operator. If the area vector is scaled by a scalar «, the force should
also be scaled, so that

s(aA) = aS(A) .

Next consider two sets of material particles. When the body is in the
reference state, the two sets of material particles form area vectors A and A, .
Because the shapes of the two regions do not affect the definition, we may choose
the two regions as rectangular regions. The vector sum A =A +A,

corresponds to another planar region of material particles. The three regions
form the surfaces of a prism. The cross section of the prism is shown in the figure.

Note that if the normal vectors N, and N, point toward the exterior of the prism,

N, points toward the interior of the prism. When the body is in the current state,
the three sets of material particles deform to some other planar regions, and the
forces acting on the three regions are P =s(A1) , P, =S(A2) and P, =s(—A3).

The prism is a free-body diagram. The forces acting on the three faces are
balanced, P3 +P +P, =0, so that

s(A3)=s(A1)+s(A2).

We have confirmed that the nominal stress should be a linear operator.

P
N. 2
N,
P3 / P1
N,
reference state current state

Exercise. A body is subject to a state of nominal stress s in the current
state. Consider a set of material particles. When the body is in the reference
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state, the set of material particles forms a three-dimensional region bounded by
two surfaces. One surface is flat, of area A and unit normal vector N. The other
surface is curved. Calculate the total force acting on the curved surface.

Exercise. Give a physical interpretation of the expression
s(—A) = —s(A) .

Components of nominal stress. The preceding definition is
independent the choice of the basis of the vector space. We next choose an

orthonormal basis e ,e,,e . Consider a set of material particles in the body.

When the body is in the reference state, the set of material particles forms a unit
cube, with the three edges coinciding with the three base vectors. When the body
is in the current state, the set of material particles for a parallelepiped.

The deformation maps the face of unit cube normal to e, to a face of the
parallelepiped. Acting on the face of the parallelepiped is the force s(el) . This

force is a vector, which is also a linear combination of the three base vectors:

s(el) =s,e +s,e +s e,
where s, are the three components of the force relative to the basis e.e,.e.
Similarly, we write

s(e )=S e +s e +S e,
2 1271 222 323
s(e )=S e +s e +s e .

3 13 1 23 2 33 3

The nine quantities s, are the components of the nominal stress. The first index

shows the direction of the force in the current state, and the second index shows
the direction of the vector normal to the face in the reference state. To remind us
of the distinct roles played by the two subscripts, we write the first subscript in
lowercase, and the second subscript in uppercase.

Using the summation convention, we write the above three expressions as

s(eK) =S5.€,.

The nine components of the nominal stress can be listed as a matrix:

sn s12 S13
321 822 23
S S

As a convention, the first index indicates the row, and the second the column. In
general, the matrix of the nominal stress is not symmetric.
The components of the nominal stress have clear physical significance.

The first column of the matrix s, corresponds to the three components of the
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force s(el), acting on the parallelepiped on the face whose normal in the

reference state is e . The force acting on the parallelepiped on the face whose
normal in the reference state is —e, is given by s(—el) = —s(el). This algebra is

consistent with a physical requirement: the balance of the forces acting on the
parallelepiped requires that the two forces acting on each pair of parallel faces of
the parallelepiped be equal in magnitude and opposite in direction. Similarly, the

other two columns of the matrix of nominal stress, s, and S;,» are the forces
acting on the other faces of the parallelepiped.

Si3

Sia

Si1

gl )
1

1 Sig

reference state current state

Stress-traction relation. Consider again the set of material particles.
When the body is in the reference state, the set of material particle forms a planar
region of unit normal N and area A. When the body is in the current state, the set
of material particles forms a planar region of some other orientation and area. In
the current state, acting on the region is a force P. Define the nominal traction T
by the force acting on the planar region in the current state divided by the area of
the region in the reference state:

T-P/A.

Recall the definition of the nominal stress, P = S(A) . In particular, the area of the
region A is a scalar, and the nominal stress is a linear operator, so that
s(AN) = As(N) . We obtain that
T-s(N).
This relation connects the nominal stress and the nominal traction.
The stress-traction relation can be expressed in terms of the components

relative to a basis of the vector space, e.e,.e.. The normal vector is a linear
combination of the base vectors:
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N=Ne +Ne, +N3e3 .
Recall the definition of the components of stress:
s(eK) =5,€ +5, € +5 e .
Consequently, the linear map of the vector is
s(N) = (311N1 +s N, + 313N3 )e1
+ (sle1 +s, N, + szsNB)e2
+ (sSIN1 + 532N2 + 333N3)e3
Recall that T = s(N) . The traction is also a linear combination of the base
vectors:
T=Te +Te, +T3e3 .
A comparison of these expressions gives that
T=s N +s N, +s N
3 3
]; = SQINI + 322N2 + 82 N
3 3
T =s. N +s N _+s N
3 31 1 32 2 33 3
The relation can also be expressed in the matrix form:

T; sn s12 s13 N 1
Tz = 821 822 823 N2
T3 531 332 533 NS

The stress-traction relation is also written in shorthand by adopting the
convention of summing over repeated indices:

T.=s,N,.

Balance of forces. The stress-traction relation can also be derived by
balancing forces. Once the state of stress of a material particle is specified by s, ,
we know traction on all six faces of the block around the particle. This
information is sufficient for us to calculate the force acting on a plane of any
direction.

Consider a set of material particles in the body. When the body is in the
reference state, the set of material particles forms a tetrahedron, with three faces
on the coordinate planes, and one face on the plane normal to the unit vector N.
Let the areas of the three triangles on the coordinate planes be A, , and the area

of the triangle normal to N be A. The geometry dictates that
A =AN,.

August 31, 2017 Finite Deformation: General Theory 32



For the latest version of this document see http://imechanica.org/node/538 Z. Suo

reference state current state

When the body is in the current state, the tetrahedron deforms to another
tetrahedron, a part of a parallelepiped. Regard this deformed tetrahedron in the

current state as a free-body diagram. On face A , the forceis s, A . On face A,,
the force is s,A,. On face A, the force is s, A4,- On face A, the force is TA.
That is, T; is the force acting on the face in the current state divided by the area

of the face in the reference state; T, is known as the normal traction.

Now balance the forces acting on the tetrahedron in the current state.
Acting on each of the four faces is a surface force. As the volume of the
tetrahedron decreases, the ratio of area over volume becomes large, so that the
surface forces prevail over the body force and the inertial force. Consequently,
the surface forces on the four faces of the tetrahedron must balance, giving

s A +s,A + sigA3 =TA.
This equation, in combination with A= AN, gives

Si1N1 +Si2N2 +Si3N3 :711' :
The stress-traction relation is an algebraic expression of a physical law: forces
acting on a tetrahedron are balanced.

Exercise. A body undergoes a homogeneous deformation from a
reference state to a current state. Consider in the body a set of material particles.
When the body is in the reference state, the set of material particles form a
tetrahedron, with three faces A ,A,, A, on the coordinate planes, and the fourth

face A intersects the three coordinate axes at 1, 2, and 3. In the current state, the
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same set of material particles forms a tetrahedron of some other shape, and the
forces acting on all faces are in the direction of X , with the forces on faces

ALALA, being of magnitudes 4, 5, 6, respectively. Calculate the force on face A.

Calculate the nominal stress tensor.

Balance of moments. Let P be a pair of forces of equal magnitude but
acting in the opposite directions. The two forces act at two points separated by a
vector r. The moment of the pair of forces is M=rxP. Recall how we calculate
the cross product, and we write the components of the moment as

M =rP-rP,

1 2 3 3 2

M =rP-rP,

2 371 173

M3 = rlP2 - r2P1 :

Now we balance the moments of the Sis
forces acting on the six faces of the
parallelepiped. Consider the pair of forces s,

acting on two parallel faces. Because the two
faces are sheared relative to each other, the two
forces are not along the same line: the two forces
have a moment. The two forces acting on points

separated by the vector F, . The moment of the

two forces is the cross product of the two vectors.
The components of the moment are

F;1331 - ‘Fg1821 ’
ansn - F;1531 ’
Fs -F s

1 21 21511 °
Forces on all six faces of the parallelepiped form three moments. The balance of
moments requires that the sum of the moments vanish:

FszgK - ngszK =0,
F31<311< - F11<531< =0,

FS, —F8,=0.
The summation is implied for the repeated index K, which represents the three
pairs of faces. The above three equations can be written in a more compact form:

s F. =stEK.

iK™ jJK
This condition balances the moments acting on the parallelepiped. In general,
neither the matrix s, , nor the matrix F, , is symmetric. However, the product

SiKFjK 1s a symmetric matrix.
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THERMODYNAMICS

A pair of forces does work to a rod. When a rod elongates from
length [ to length [+ d , the force P does work PA . The force and the length are
work-conjugate.

Recall the definitions of stretch and the nominal stress:

[=AL, P=sA.
Consequently the work done by the force is
Pol = ALs6A. .
Since AL is the volume of the bar in the reference state, we note that

incrementof workinthe currentstate

SOA = -
volumein thereference state

The nominal stress and the stretch are work-conjugate.

A set of forces does work to a parallelepiped. We now generalize
this definition to a body of an arbitrary shape undergoing a homogeneous
deformation of an arbitrary type. Once again consider the homogenous
deformation that changes a unit cube in the reference state to a parallelepiped in
the current state. When the parallelepiped undergoes an infinitesimal,
homogeneous deformation, and becomes a slightly different parallelepiped, one

edge vector of the parallelepiped changes by JF, . Associated with this
infinitesimal deformation, the pair of forces s, do work, which is calculated by
the inner product of the two vectors,

Si3

s, OF, . Similarly, another edge vector of
the parallelepiped changes by JF, , and

the pair of forces s, do work s JF, . The
third edge vector of the parallelepiped
changes by F,, and the pair of forces s,

do work si36F:.3. Associated with the

infinitesimal, homogeneous deformation
of the parallelepiped, the forces acting on
the six faces of the parallelepiped do work:

s, OF +s OF + si36E3 .
Using the summation convention, we write
incrementof workinthe currentstate
volumein thereferencestate '

SiKa‘F:'K =
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The forces acting on the block can be applied by a set of hanging weights.
Associated with the infinitesimal deformation, the potential energy of the weights

changes by -s, OF, .

Free energy. The deformation is taken to be isothermal—that is, the
body is in thermal equilibrium with a large reservoir of energy, held at a fixed
temperature. Thus, we will not treat the temperature as a variable. You should
have learned thermodynamics in a separate course. For a reminder of the
isothermal process and the Helmholtz free energy, see
http://imechanica.org/node/4878.

Let W be the Helmholtz free energy of the block in the current state,
namely,

Helmholtzfreeenergyinthe currentstate
volumein thereferencestate '

The block and the weights together form a composite thermodynamic
system. The Helmholtz free energy of the composite is the sum of that of the
block and the potential energy of the weights:

W_siKE'K'
The composite exchanges energy with the rest of the world by heat, but not by
work.

W =

Thermodynamic inequality. When the composite is in a state of
equilibrium, the Helmholtz free energy of the composite is minimum. When the
composite is not in a state of equilibrium, the Helmholtz free energy of the
composite should only decrease. These statements are summarized as

OW -5, 0F, <0.

The variation means the value of a quantity at a time minus that at a slightly
earlier time. The inequality means that the increase in the free energy is no
greater than the work done. As usual in thermodynamics, this inequality involves
the direction of time, but not the duration of time. The thermodynamic
inequality holds for arbitrary, infinitesimal, homogeneous deformation. The
work done by the forces equals or exceeds the change in the free energy of the
body. The difference is called the dissipation.

Thermodynamics does not prescribe a rheological model, but places a
constraint in constructing a rheological model.
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ELASTICITY

Thermodynamic equilibrium. As a particular rheological model, the
block is pictured as a nonlinear spring. By this picture we mean that the block is
assumed to be a reversible thermodynamic system. The block is in
thermodynamic equilibrium as it deforms. The thermodynamic inequality is
replaced with an equation:

oW -s OF =0.

In this model, the change in the Helmholtz free energy equals the work done by
the forces. The thermodynamic equation holds for arbitrary infinitesimal
deformation 6F, .

The above statement implies that the Helmholtz free energy is a function
of the deformation gradient:

W =W(F).

According to the differential calculus, associated with an infinitesimal

homogeneous deformation of the parallelepiped, the free energy changes by
sw = W (F) 5.
oF,
Combining the two expressions, we obtain that
oW (F

aF 1K

1K

6E.K=0.

Because this thermodynamic equation holds for arbitrary infinitesimal
deformation JF, , we obtain that

s _OW(F)
®9F,
Once the function W(F) is prescribed, the above equation gives the stress-strain

relation, or the equation of state.

Rigid-body rotation and balance of moments. The following two
ideas are equivalent: the free energy of the block is invariant with respect to the
rigid-body rotation and the moments acting on the block are balanced.

The free energy is invariant when the block undergoing a rigid-body
rotation. Thus, the free energy depends on F through the deformation tensor C:

w-w(c).
Recall that C, = F, F, and s, =0W /dF, . We obtain that

aW(C)
Sy =2F,; T .

JK
This equation readily confirms that
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s F. =stF

iK™ j iK *

This is the expression for the balance of the moments acting on the block.

Models of elasticity. A model of elasticity represents a material by
relating strain and stress when the material undergoes homogeneous
deformation. To specify the model, we need to specify the nominal density of the
Helmholtz free energy as a function of the Green deformation tensor:

w-w(c).

The tensor C is symmetric and has 6 independent components. Thus, to specify
an elastic material model, we need to specify the free energy as a function of the 6
variables. For a given material, such a function is specified by a combination of
experimental measurements and theoretical considerations. Trade off is made
between the amount of effort and the need for accuracy. Commonly used free-
energy  functions are  described in  another set of notes
(http://imechanica.org/node/14146).
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INHOMOGENEOUS DEFORMATION

Name a material particle by the coordinate of the place
occupied by the material particle when the body is in a reference state.
Subject to loads, the body deforms in a three-dimensional space. Each small part
of the space is called a place, labeled by its coordinate x. Each small part of the
body is called a material particle. At a given time ¢, the material particle occupies
a place in the space. As time progresses, the material particle moves from one
place to another. The trajectory of the material particle is described by the place
of the particle as a function of time, x(t).

We can name a material particle any way we like. For example, we often
name a material particle by using an English letter, a Chinese character, or a
colored symbol—a red star for example. When dealing with a large number of
material particles, we need a systematic scheme. For example, we name each
material particle by the coordinate X of the place occupied by the material
particle when the body is in a particular state.

reference state current state
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We call this particular state of the body the reference state. We will use
the phrase “the particle X” as shorthand for “the material particle that occupies
the place with coordinate X when the body is in the reference state”. In addition
to being systematic, naming material particles by coordinates has another merit.
Once we know the name of one material particle, we know the names of all its
neighbors, and we can apply calculus.

Often we choose the reference state to be the state when the body is
unstressed. However, even without external loading, a body may be under a field
of residual stress. Thus, we may not be able to always set the reference state as
the unstressed state. Rather, any state of the body may be used as a reference
state.

Indeed, the reference state need not be an actual state of the body, and
can be a hypothetical state of the body. For example, we can use a flat plate as a
reference state for a shell, even if the shell is always curved and is never flat. To
enable us to use differential calculus, all that matters is that material particles can
be mapped from the reference state to any actual state by a 1-to-1 smooth
function.

reference state current state at time ¢

As a body moves, every material particle in the body moves.
Now we are given a body in a three-dimensional space. We have set up a system
of coordinates in the space, and have chosen a reference state of the body to name
material particles. When the body is in the reference state, a material particle
occupies a place whose coordinate is X. At time ¢, the body deforms to a current
state, and the material particle X moves to a place whose coordinate is x. The
time-dependent field
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X= X(X, t)

describes the history of deformation of the body. The domain of this function is
the coordinates of material particles when the body is in the reference state, as
well as the time. The range of this function is the coordinates of the places
occupied by the material particles. The function x(X,t) gives the trajectory of
every material particle in the body. A central aim of continuum mechanics is to
evolve the field of deformation x(X,t) by developing an equation of motion.

The function X(X,t) has two independent variables: X and t. The two
variables can change independently. We next examine their changes separately.

Exercise. Give a pictorial interpretation of the following field of
deformation:

x, =X, +X, tan y(t)
x,=X
x, =X

3

2

Compare the above field with another field of deformation:
x, =X, +X, sin y(t)
x, = X, cos ¥(t)
x3 = X3
Displacement, velocity, and acceleration of a material particle.
At time t, the material particle X occupies the place x(X,t). At a slightly later
time t + Jt, the same material particle X occupies a different place X(X,t+5t).
During the short time between t and t + &, the material particle X moves by a
small displacement:
& =x(X,t+)-x(X,t).
The velocity of the material particle X at time t is defined as
Ve x(X,t +dt)-x(X,t)
5 )

or,
_ox(X,t)
ot
The velocity is a time-dependent field, V(X,t).
The acceleration of the material particle X at time t is

*x(X,t
a(X,t): % .
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The fields of velocity and acceleration are linear in the field of deformation
x(X,t).

reference state state at ¢ and state at ¢ + Ot

Exercise. Given a field of deformation,
x, =X, +X, sin y(t)
x, = X, cos ¥(t)
x3 = X3
Calculate the fields of velocity and acceleration.

Deformation gradient. We have just interpreted the partial derivative
of the function x(X,t) with respect to t. We next interpret the partial derivative
of the function x(X,t) with respect to X.

Consider two nearby material particles in the body. When the body is in
the reference state, the first particle occupies the place with the coordinate X,
and the second particle occupies the place with the coordinate X +dX. The
vector dX connects the places occupied by the two material particles when the
body is in the reference state. When the body is in the current state at time t, the
first material particle occupies the place with the coordinate X(X,t), and the
second material particle occupies the place with the coordinate x(X+dX,t). At
time t, the two material particles are ends of a vector:
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dx=x(X+dX,t)—x(X,t).
Note the difference between two ideas: & =x(X,t+dt)-x(X,t) means the
displacement of any single material particle at two different times, and

dx = x(X+dX,t) —X(X,i‘) means the distance between two material particles at a

given time.

reference state current state at time ¢

The Taylor expansion of the function x(X,t) is
ox, (X, 1)
——1dX

xi(X+dX,t)=xi(X,t)+ X, P

Here the time t is fixed, and only the term linear in dX « is retained. The

expansion is accurate when the two material particles are sufficiently close to
each other—that is, when the vector dX is sufficiently short.
Rewrite the Taylor expansion as

_ax, (Xt) 5
1 aXK K
Recall the definition of the deformation gradient for a homogeneous deformation.
For a time dependent, homogeneous deformation, the deformation gradient F is
defined as the linear map from dX in the reference state to dx in the current
state, namely,

dx=FdX.

A comparison of the two expressions identifies that
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Fy = ox;(X,t) '
0X g
The field F(X,t)is the gradient of the field of deformation x(X,t). Thus, when a

body undergoes a time-dependent, inhomogeneous deformation, at a fixed time a
set of material particles near one another behaves just like homogeneous
deformation. Within this set of material particles, a straight segment of material
particles in the reference state remains a straight segment in the current state,
but is stretched and rotated. The deformation gradient F maps the segment from
the reference state to the current state, and is given by the gradient of the field
x(X,t).

Exercise. Given a field of deformation,
x, =X, + X, sin y(t)
x, = X, cos ¥(t)
x, =X,
Calculate the deformation gradient. Is the deformation homogeneous?
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CONSERVATION OF MASS

When a body is in the reference state, a material particle occupies a place
with coordinate X. Consider a material element of volume around the particle.
When the body is in a current state at t, the same material element deforms to

some other shape. Let p, be the nominal density of mass, namely,

_ massof thematerialelement incurrentstate
volume of the material element in reference state -

R

During deformation, we assume that the material element does not gain
or lose mass, so that the nominal density of mass, p,, is time-independent. If the

body in the reference state is inhomogeneous, the nominal density of mass in
general varies from one material particle to another. Combining these two
considerations, we write the nominal density of mass as a function of material
particle:

Pr = P (X).
This function is given as an input to our theory. The conservation of mass
requires that the nominal density of mass is independent of time.

reference state current state
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CONSERVATION OF MOMENTUM

Body force. Consider a material element of volume around material
particle X. When the body in the reference state, the volume of the element is
dV(X). When the body is in the current state at time t, the force acting on the
element is denoted by B(X,t)dV(X), namely,

forceincurrentstate
volume inreferencestate
The force B(X,t)dV(X) is called the body force, and the vector B(X,t) the

nominal density of the body force. The body force is applied by an agent external
to the body.

B(X,t)=

Exercise. Given a field of deformation:
x, =X, +X,siny(t)
x, =X, cos y(t)
x,=X
The body is in a gravitational field, and is of nominal density of 1000kg/m3. The

3

gravitational field is pointing down along the x, axis. Calculate the nominal

density of the body force due to gravitation in the current state at time ¢.

Inertial force. The dynamics of a particle is governed by Newton’s
second law:
Force = Mass times Acceleration.
From this expression, we can regard the term “mass times acceleration” as the
inertial force, acting in the direction opposite to that of the acceleration.
Newton’s second law is then expressed as the balance forces acting on the particle,
including the inertial force.
For a continuum body, we can regard the term
*x(X,t
()L

as a special type of the body force, called the inertial force.

Balance of forces. The dynamics of a particle is governed by Newton’s
second law:
Force = Mass times Acceleration.
We now apply this law to a small block in a body. In the reference state, the block
is rectangular, with faces parallel to the coordinate planes, and of sides A,B,C.
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In the current state, the block deforms to some other shape. In the free-body
diagram of the block in the current state, we should include surface forces, body
forces, and inertial forces. (For clarity, in the figure only surface forces in
direction 3 on the six faces of the block are indicated.) Newton’s second law
states that

BCs, (X, +A,X,,X,t)-BCs, (X,,X,,X,,t)

11

+CAs. (XX +B,X3,t)—CAsi2(X ,XQ,XB,t)

12

+ABs, (X,,X,,X, +C,t)-ABs, (X, X, X, t)
13 1 2 3 13 1 2 3
+ABCB, (Xt)
0°x, (X,t)
=ABCp, (X)———~
PelX) ot*
Dividing this equation by the volume of the block, ABC, we obtain that
ds. (X,t *x. (Xt
L.*.B_(X,t) -0, (X)M
30X ‘ at®
s, (X, XX, +C,1) 5,.(X,,X, +B,X,,t)
s, (X, X,,X,,t)
B:dX2 I
| C=dX, s, (X, +A,X,, X, t
e - )
X, A=dX,
by
Xl
reference state current state

Divergence theorem. In the following development, we will need the
divergence theorem:
of (X)
—dV = dA,
f aXK fﬂVK

where f (X) is a field, N is unit vector normal to the surface. The integrals are
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over the volume of a region and the surface of a region, respectively.

An alternative approach to the balance of linear momentum.
Consider an arbitrary part of the body. In the current state, the combined forces
acting on the part must vanish:

25 X,
fsl.KNKdA+f Bi—pR(X)M

ot*

dV =o0.

The first integral is over the surface of the part in the reference state, and the
second integral is over the volume of the part in the reference state.
According to the divergence theorem, we write

ds.
[s, N dA= [—EdV.
K X,
A combination of the above expressions gives that

s o*x, (Xt
fa;—";+Bi—pR(X)%

dvV=o0.

This equality holds for arbitrary part of the body. Consequently, the integrand
must vanish.

Conservation of angular momentum. Consider an arbitrary part of
the body. In the current state, the combined moments acting on the part must
vanish:

2 ) X’
fo iK KdA+ij Bi_pR(X)y dv
2 ) X’
=fxistN1<dA+fxi Bj—pR(X)# dv

According to the divergence theorem, we write

[ x5, N dA= f(“K)dV f

K

F_s. +X, siK dv.
.4

JKTIK
K

We can similarly convert f x5, N, dA to an integral over volume. Combining
JK” K

the above expressions and using the conservation of linear momentum, we obtain
that

JFys,dV=[Fs,dv.
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This equality holds for arbitrary part of the body. Consequently, the integrands
must be equal:

F s _=F_s

JKTiK iKY jK *
This expression recovers what we know before. Thus, the conservation of angular
momentum leads to no new equations.

Weak statement of the balance of forces. The balance of forces
results in two equations:
T, =sx Ny,
9s. 9°x.
—X+B =p,—
0X ! ot*

K
This pair of equations may be called the strong statement of the balance of forces.

Denote an arbitrary field by A, (X) Multiplying Ai(X) to the two

equations of the strong statement, integrating over the surface of the part and the
volume of the part, respectively, and then adding the two, we obtain that

ZTX 8,V + [(T, -5, N, )A,dA=o0.

The integrals extend over the volume and the surface of the body.
Manipulate one term in the above equation:

e av - e gy flK
—fle N dA- fs av

In the above, we have used the divergence theorem.
Consequently, we obtain that

fs —dV fTAdA+f LIA.dV .

BpR

The strong statement of the balance of forces implies that the above equation
holds for any field Ai(X). This statement is known as the weak statement of the

balance of forces. The field A,(X) is called a test function.

Exercise. Start with the weak statement of the balance of forces, and
show that the weak statement implies the strong statement.
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THERMODYNAMICS OF INHOMOGENEOUS DEFORMATION

For homogeneous deformation, thermodynamics dictates that the

increase in the free energy is no greater than the work done
oW =<s, OF, .

The variation means the value of a quantity at a time minus that at a slightly
earlier time. The inequality involves the direction of time, but not the duration of
time. = The thermodynamic inequality holds for arbitrary infinitesimal,
homogeneous deformation.

We now confirm that so long as the material model satisfies the
thermodynamic inequality, the inhomogeneous, time-dependent deformation
also satisfies thermodynamics. Interpret the test function as a virtual change in

the deformation, Ai(X)—>6xi(X), so that aAi(X)/aXK—nSFiK and the weak
statement becomes

2x
1

o™X,
[ 54 0F, AV = [T, 6x,dA+ [ B~ py— 2t |ox,dV .

This statement is known as the principle of virtual work. The virtual deformation
Ox, (X) is unrelated to the actual deformation x, (X,t) .

If the material model satisfies the thermodynamic inequality,
O0W =s, OF, , a combination of the inequality and the principle of virtual work
gives that

62xl.

Jowav < [T ox,dA+ [ B,-pp—* |6x,dV. .

This is the thermodynamic inequality for time-dependent, inhomogeneous
deformation. The left-hand side is the increment of the free energy of the body,
and the right-hand side is the work done by the applied forces and the inertial
force. Thus, once the material model satisfies the thermodynamic inequality,

oW =s, OF, , the entire body also satisfies the thermodynamic model.
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INITIAL AND BOUNDARY VALUE PROBLEMS IN ELASTICITY

The ingredients of finite elasticity. Model of elasticity. We describe
the state of each material particle by two tensors. The deformation gradient F is
the linear operator that maps a segment of a line of material particles in the
reference state to a straight segment in the current state, y=FY . The nominal
stress s is the linear operator that maps an area vector of a planar region of
material particles in the reference state to the force acting on the same region of
material particles in the current state, P=sA . We specify the model of elasticity
by giving the Helmholtz free-energy function W(F) The nominal stress relates

to the deformation gradient by

o _OW(F)
® OF,
The function W(F) depends on F through the product F'F. Such a material

model conserves angular momentum, F; s, =F;s, .
Compatibility of deformation. A body is represented by a set of material
particles. Each material particle is named by its place X when the body is in a
reference state. In the current state at time t, the material particle occupies the
place with coordinate x. The function x(X,t) describes the deformation of the
entire body in time. The deformation gradient relates to the deformation
function through
ox,(X,t)
F =202,
X

Balance of forces. The body is prescribed with a field of mass density,

on (X) . The body is subject to a field of body force B(X,t). The balance of forces
requires that
0S (X,t)
X,
On part of the surface of the body, the traction is prescribed, so that
Sy (X,t)NK (X) = prescribed .

+B(X,t)=p, (X)#

Exercise. We will be restricted to isothermal processes. The body is in
thermal contact with a reservoir of energy held at a fixed temperature. This
temperature is also assumed to be held in the body. In the isothermal process,
the principle of the conservation of energy is not used in formulating the
continuum theory. Why?
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Initial and boundary value problems. We can combine the three
equations and write

o [0W(F) . o*x,(X,t)
x| oE +Bi(X,t)—pR(X)T.

This equation, known as the equation of motion, is the partial differential
equation that evolves the field of deformation x(X,t)in time, subject to the

following initial and boundary conditions.
Initial conditions are given by prescribing at time ¢, the places of all the

particles, X(X,t0 ), and the velocities of all the particles, V(X,to) .

For every material particle on the surface of the body, we prescribe either
one of the following two boundary conditions. On part of the surface of the body,
S, , the traction is prescribed, so that

Sy (X,t)N . (X)=prescribed, for Xe S,.
On the other part of the surface of the body, S,
x(X,t)=prescribed, for Xe S,.

the position is prescribed, so that

Now we have the basic equations. What do we do next? The

above formulation of the boundary-value problem has existed for well over a

century. However, exploration of its consequences remains active to this day.
Representative activities include

e Model a specific elastic material by constructing a function W(F), by a

combination of microcosmic modeling and experimental testing.
e Model a specific phenomenon of elastic deformation by formulating a
boundary-value problem.
e Analyze such a boundary-value problem by analytic techniques, such as
dimensional analysis and linear perturbation.
e Analyze such a boundary-value problem by numerical methods, such as
using commercial finite element package.
Of course, you can also play another kind of game: you can use the similar
approach to formulate models for phenomena other than the deformation of an
elastic body.

Finite element method. The weak statement of the balance of forces is
the basis for the finite element method (http://imechanica.org/node/324). Here
I sketch the basic ideas. These ideas are greatly amplified in a separate course on
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finite element method.

In the weak statement, the volume integrals extend over the entire body,
and the surface integral extends over the part of the surface of the body on which
traction is prescribed. The test function A (X) is set to vanish on part of the
surface where displacement is prescribed. In addition to the weak statement of
the balance of forces, three other ingredients of the boundary value problem are
the conservation of mass:

P =P (X),
the compatibility of deformation:
F, - axi(X,t),
0X
and the model of material
oW (F
Sk = ( )
oF,

The functions pR(X) and W(F) are prescribed.

Let N "‘(X) be a set of functions defined in the body, known as the shape

functions. Interpolate the test function in terms of the shape functions:
A, (X)= Y DiN“(X).

This interpolation represents the test functions in terms of a set of discrete values
D;. Because the test function is arbitrary, the values D/ are also arbitrary.

Insert this expression into the weak statement, and we obtain that
stKE( JJV fTE(D“N")dA+f B - pR e )E(D“N“)dV
K

The weak statement holds for arbitrary values of D*. This single equation is

equivalent to a set of equations:

aN “
fsiKaX V= [TN“dA+ [
The displacement is also interpolated using the same shape functions:
x,(X,t)- X, = Y (t)N“(X).

The compatibility of deformation and the material model are used to express the

B - pR L IN“dV .

stress in terms of ulf”(t). Consequently, the weak statement becomes a set of

August 31, 2017 Finite Deformation: General Theory 53



For the latest version of this document see http://imechanica.org/node/538 Z. Suo

ordinary differential equations for ulf’(t). This set of ordinary differential

equations is evolved using computer.

State of equilibrium. Subject to a static load, a body can reach a state
of equilibrium. In the state of equilibrium, the deformation of the body no longer
changes with time, and the field of deformation is time-independent, described

by the function X(X) . This function characterizes the state of equilibrium.

The field of deformation function X(X) is governed by the field equations

axi(X)
KTUOX
% (X) +B(X)-o,
X,
s _oW(F)
)

as well as time-independent boundary conditions. These equations result in a
boundary-value problem.

Exercise. Develop the basic equations for the finite element method to
solve static elasticity problems.

Stability of a state of equilibrium. A body is subject to a static load.
The static load may be represented by an idealized loading device, such as a dead
weight or a constant pressure. The body and the loading device together form a
composite thermodynamic system. This composite
system interacts with the rest of the world by heat
transfer, but not by work. A state of equilibrium is
stable if the state minimizes the Helmholtz free energy
of the composite; see separate notes for a reminder of
free energy (http://imechanica.org/node/4878).

The Helmholtz free energy of the composite is
the sum of the Helmholtz free energy of the body and
that of the loading device. For example, if the static load
is a dead weight, the Helmholtz free of the loading
device is simply the potential energy of the dead weight,

-PL, where P is the weight (i.e., the fixed force) and [ is E

the displace of the weight. The free energy of the

body
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composite is
fw(F)v-rL,
where the deformation gradient relates to the field of deformation by
ax. (X
Fy = (;XLK) :
The Helmholtz free energy is a functional of the field of deformation, X(X) . Of

all possible field of deformation, a stable state of equilibrium minimizes the
Helmholtz free energy of the composite.

Exercise. A body is subject to a constant pressure on its surface. The
body is made of an elastic material characterized by the nominal density of

Helmholtz free energy as a function of the deformation gradient, W(F) . Picture

that the pressure is applied by some device. The body and the device together
form a composite system. Write the Helmholtz free energy of the composite.
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ALTERNATIVE MATHEMATICAL REPRESENTATIONS

An idea in the continuum theory often has alternative mathematical
representations. The alternative representations add no substance to the theory,
but they appear in the literature so frequently that you should know them.
Besides, alternative representations of an idea may shed light on the idea itself.
Here we give a few examples. You can find many more in textbooks.

True stress. Subject to an axial force, the rod changes its length and
cross-sectional area. The true stress is defined by
forceincurrentstate
areaincurrentstate -

truestress =

In the current state, let P be the axial force, and a be the cross-sectional area of
the rod. The true stress is defined by

reference state current state

reference state current state
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We now generalize this definition to a body of an arbitrary shape
undergoing a homogeneous deformation of an arbitrary type. Consider a set of
material particles. When the body is in the current state, the set of material
particles lies on a plane of unit normal vector n, in a region of area a. The vector
an represents the planar region as a vector, written as a=an. Acting on the
planar region is a force P.

Define the true stress as the operator operator ¢ that maps the area
vector a to the force P:

P-= a(a) .
The true stress is also known as the Cauchy stress. The true stress is also a linear
operator.

The components of true stress. The components of the true stress
form a matrix. Consider a unit cube in the body in the current state. Each
column of the matrix is the force acting on a face of the cube.

Stress-traction relation. In the current state, consider a plane of unit
normal vector n. Define the true traction t as force acting on the plane divided by
the area of the plane. Consider a tetrahedron formed by the plane and the three
coordinate planes. The balance of forces acting on the tetrahedron requires that

t=o.n..
1 v J

The true stress maps one vector (the unit normal vector) to another vector (the
true traction).

Balance of moments. For a body in the current state, imagine a unit
cube in the body orientated in the directions of a set of rectangular coordinates.

The true stress o; is defined as the force in direction 7 acting on a face of the cube
of normal vector in direction j. True stress is also known as the Cauchy stress.
The balance of momentum requires that
0.=0..
y Jt

Relation between true stress and nominal stress. Consider a set of
material particles. In the reference state, the set of material particles forms a
region represented by the area vector A. After a homogeneous deformation F,
the same set of material particles forms a region represented by the vector a. The

two area vectors are related by the formula of Nanson, F'a=JA .
We have expressed the force acting on the plane in the current state, P, in

two ways: P= G(a) and P= S(A) . Thus, G(a) = S(A) . This expression, along
with the formula of Nanson, becomes
s(FTa)
ofa)- "2,
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The expression equates two vectors. Because the equation holds for arbitrary
choice of a, we reach an expression that equates two tensors:

sF”
o= .
J
Write this expression in terms of components:

_ siKF‘jK
i J
This expression relates the true stress and the nominal stress.
We have expressed the balance of moments in terms of the true stress

0,=0, as well as in terms of the nominal stress, sl.KF].K =s_F_. These two

KUK "

expressions are equivalent.

The second Piola-Kirchhoff stress. Here is another redundant idea

commonly in use. Define the second Piola-Kirchhoff stress, S, , by

KL’
workin the curent state
volume in the referencestate

= SKLéEKL'

This expression defines a new measure of stress, § Because E,, is a

KL*
symmetric tensor, we can set S,, to be symmetric.
Recall that we have also expressed the same work by s, JF, . Equating
the two expressions for work, we write
S OFy =Sk 0E, -
Recall the definition of the Lagrange strain,

1
E., :E(FiKFiL _51@) .
We obtain that
1
éEKL :E(FiLéFiK +Fi[(é}7iL)

and
S OFy =Sy, Fy OF .

Here we have used the symmetry S In the above equation, each side is a

« =Sk
sum of nine terms. Each component of JF, is an arbitrary and independent
variation. Consequently, the factors in front of each component of JF, must
equal, giving

S =Sk Fy -
This equation relates the first Piola-Kirchhoff stress to the second Piola-Kirchhoff
stress.
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Exercise. For an elastic material, the nominal density of the Helmholtz
free energy is a function of the Lagrange strain, W(E). Starting from basic
definitions and thermodynamic considerations, show that the second Piola-
Kirchhoff stress relates to the Lagrange strain as

oW (E)

Sp=—p5 —-

oE,
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EVOLVING HOMOGENEOUS DEFORMATION IN TIME

A rod elongates as a function of time. A rod is of length L in a
reference state, and is of length l(t) at time t. The length of the rod in the

reference state is of course independent of time. The stretch is defined by
It
21
L

When the length of a bar changes by a small amount from [ to [+dl, the
increment in the natural strain is defined as

de = # .
Thus, the rate of the natural strain is
@ _ dl(t)
dt ldt -

Evolve homogeneous deformation in time. As time goes on, a body
undergoes a succession of homogeneous deformations, represented by the

deformation gradient as a function of time, F(t) Consider a set of material
particles in the body. When the body is in the reference state, the set of material

particles form a straight segment, which we denote by a vector Y. When the body
is in the current state at time ¢, the same set of material particles forms another

straight segment, which we denote by vector y(t). The deformation from the

reference state to the current state is homogeneous, so that the two vectors are
related to each other through a linear map:

y(t)=F(t)Y.
The deformation gradient F(t) changes with time. At a given time, the same

deformation gradient maps any straight segment in the reference state to the
straight segment in the current state.
Note that the vector Y is independent of time, so that

dft) _dF(e)y

dt dt
The quantity dy(t) /dt is the rate of change of the straight segment of the same

set of material particles.
Velocity gradient. A body undergoes a time-dependent, homogeneous

deformation. A material particle in the body is at position X in the reference state,
and is at position x in the current state at time t. The velocity of the material
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particle is

dt
If the body undergoes a rigid-body translation, all material particles in the body
move by the same velocity. If the body also rotates and stretches, however,
different material particles in the body can move by different velocities. Consider

another material particle, whose position is X in the reference state and is x_ in
the current state. The displacement of this material particle is

_ dx, (t) '
0 dt

A%

Define a new tensor L by
V-V, =L(X—XO)
The tensor L is called the velocity gradient. In general, the tensor is time-
dependent, L(t).
The distance between the two material particles in the current state is

y=x-Xx_. The definition of the velocity gradient is equivalent to

Exercise. Show that

Given the deformation as a function of time, F(t) , the above expression

calculates the rate of deformation L(t) .

Rate of deformation. Consider a set of material particles. At time t,
the set of material particles forms a rectangular block. At time t+dt, the same
set of material particles forms a parallelepiped. The rates of normal strain are

L,L L. .
11 22 33

The rates of shear strain are L, +L,,L +L,,L +L,. These six quantities do

not form a tensor. However, we can define a tensor as

DI.J.=§(LI.J.+LJ.I.).
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This definition is also written as
D- l(L +17 ) .
2

The tensor D is symmetric and is known as the rate-of-deformation tensor. The
rate of deformation D is the symmetric part of the velocity gradient L.

Stretching a line of material particles. Consider a set of material
particles. At time t, the set of material particles forms a segment of a straight line.
The homogeneous deformation of the body translates, rotates and stretches the
segment, but the same set of material particles remains a straight segment at all

time. Represent the segment at time ¢ by a vector y(t) . The vector obeys
dy _

dt
Take dot product of the above equation with y, and we obtain that
d(y-y)

dt
The above expression only contains the symmetric part of the velocity gradient.

Ly.

=2y Dy .

Write the straight segment as y = Im, where [ is the length of the segment, and m

is the unit vector along the segment. The above equation is written as

dr =o2m’Dm.

Idt
This expression calculates the rate of natural strain of the line of material
particles.

Spin. Denote the anti-symmetric part of the rate of deformation by
1
2
This tensor is known as the spin. The spin does not distort the material, and does
not cause any stress.

w (L-LT).

Power. Consider a unit cube in the current state. The velocity gradients
L, represent the velocity of one face of the cube relative to another, and the true

stresses o; represent forces acting on the faces. We obtain that

powerinthecurentstate g
volumeinthecurrentstate ¥ 7

Because the true stress is a symmetric tensor, the above expression is equivalent
to
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powerinthecurentstate a
volumeinthecurrentstate ¥ ¢

Exercise. Recall the expression
work in thecurentstate
volume in the reference state

Note that the nominal stress is related to the true stress, and the deformation
gradient is related to the displacement gradient. Confirm that the above
expression is consistent with the expression for the power density.

SOl i

Viscosity. Viscous flow is a material model with the following
assumptions. The Helmholtz free energy does not change with deformation, and
the stress is a function of the rate of deformation. Thermodynamics requires that

o.D.>0
iy

for any non-zero stress state.
A special case is the Newtonian fluids. The components of the stress
relate to the components of the rate of deformation as

o.=2nD.-pé.,
y y y
where 77 is the viscosity. The material is assumed to be compressible:

Dkk=0.
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EULERIAN FORMULATION OF INHOMOGENEOUS DEFORMATION

At time ¢, a material particle X moves to position x. We describe the
deformation of the entire body in time by the function

X= X(X,t) .
The function x(X,t) gives the place occupied by the material particle X at time t.

The inverse function, X(x,t), tells us which material particle is at place x at time

t.

The formulation in the previous pages uses the material coordinate X and
time t as independent variables, a formulation known as the Lagrangian
formulation. The formulation results in initial boundary value problems that
evolve in time various fields with coordinates of material particles in the
reference state. Here we develop the formulation using the spatial coordinate x,
known as the Eulerian formulation.

Time derivative of a function of material particle. Let Q be a
physical quantity. For example, Q can be the temperature. The function

Q=f (X,t) represents the temperature of material particle X at time t. The
function Q = g(x,t) represents the temperature of the material particle at place x
at time t. The two functions are related as
f(X,t) = g(x,t) , X= X(X,t)
The rate of change in temperature of the material particle is
of (X,t)

ot
This rate is known as the material time derivative. We can calculate the material

time derivative by using the function g(x,t) . Using chain rule, we obtain that

of (Xt) _ ag(x,t) , ag(x,t) ox, (Xt) |

ot ot ox, ot
Recall that the velocity of the material particle X at time ¢ is
ox(X,t
LS
ot

Thus, we can calculate the substantial time rate from
of (X,t) odg(x,t) ag(x,t
(X.t) _dg(xt) ag(x.t)

ot ot o,

In the above, we have used three symbols to represent the temperature: Q,
fand g. This practice is impractical when we deal with many different quantities.

vi(x,t).
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We will use one symbol to represent the same quantity: Q(X,t) and Q(x,t).

They represent the temperature as two functions different independent variables.
Using this notation, the above change of variable is written as

aQ(X,t) _ aQ(x,t) \ aQ(x,t)

V. (X,t) .
ot ot ox,
In the Lagrangean formulation, the acceleration is
ov(X,t
2t
ot

In the Eulerian formulation, the acceleration of a material particle is
v, (X,t) v, (X,t)
a, (x,t) = of + axj v; (x,t) .

Rate of deformation. Let v(x,t) be the velocity field. Let x and x +dx

be the places occupied by two material particles when the body is in the current
state at time t. The two material particles are the ends of a straight segment. The

vector v(x +dx,t) —V(X,t) is the rate at which the straight segment changes. The
Taylor expansion gives
. (x,t
vi(x+dx,t)—vl. (x,t) = de
ax; !
The velocity gradient is
v, (X,t)
i ok,
J

The rate of deformation is
avi(x,t) avj(x,t)

1
== +
2 axj ax.

1

The vorticity is
_avi(x,t) avj(x,t)_ .

1
i o ox; ox,

1

Conservation of mass. In the Lagrange formulation, the nominal
mass density is defined by
massincurrent state
R = . .
volume inreference state
That is, p,dV is the mass of a material element of volume. A subscript is added

here to remind us that the volume is in the reference state.
In the Eularian formulation, the true mass density is defined by
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_ massincurrentstate
~ volumeincurrentstate
That is, pdv is the mass of a spatial element of volume.
The two definitions of density are related as

deV = ,de,

or
pr =pdetF.

The conservation of mass requires that the mass of the material element
of volume be time-independent. Thus, the nominal density can only vary with
material particle, p,(X), and is time-independent. By contrast, the true density
is a function of both place and time, p(x,t). The conservation of mass requires
that

Ip(x,t)
ot

When the material is incompressible, detF =1, we obtain that

Pr (X) = p(X,t).

+%b(x,t)vi(x,t)]:o.

Balance of momentum. The true stress obeys that

0. | X,t v, (x,t) dvu(x,t
%+bi<x,t)=p(x,t) ((3t )+ ( )vj(x,t) ,

0x.
J J

in the volume of the body, and
o,n; =t,

on the surface of the body. These are familiar equations used in fluid mechanics.
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