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  FINITE DEFORMATION:  GENERAL THEORY 
 
 The notes on finite deformation have been divided into three parts:   

• General theory (http://imechanica.org/node/538) 
• Elasticity of rubber-like materials (http://imechanica.org/node/14146) 
• Special cases (http://imechanica.org/node/5065)  

The three parts can be read in any order.  
 
 
  DIVISION OF LABOR 
 
 A body is made of atoms.  Each atom is made of electrons, protons and 
neutrons.  Each proton is made of...  This kind of description is good for studying 
the fundamental nature of matter, but not for many other purposes.  We will not 
go very far in life if we keep picturing a bridge as a pile of atoms.  Instead, we will 
develop a different description, called continuum mechanics.  Continuum 
mechanics studies how a force causes a body to deform.  Continuum mechanics is 
effective whenever we can identify two widely separated length scales.  
  
 Two length scales. The deformation of the body is in general 
inhomogeneous—that is, the amount of deformation varies from one part of the 
body to another part.  When we examine the deformation of a body, we can 
identify two length scales: 

• length scale over which the macroscopic variation of deformation occurs 
• length scale over which the microscopic process of deformation occurs. 

For example, when a rubber eraser is bent, the macroscopic deformation varies 
over a length scaled with the thickness of the eraser (several millimeters).  The 
rubber is a network of molecular chains.  The microscopic process of deformation 
occurs over the length scaled with the length of an individual molecular chain 
(several nanometers). 
 

Representative elementary volume.  In many applications, the two 
length scales are widely separated.  If they are, we can describe the behavior of 
the material by using a volume much larger than the size characteristic of the 
microscopic process of deformation, but much smaller than the size characteristic 
of the macroscopic deformation.  Such a volume is known as a representative 
elementary volume (REV).   

In the rubber eraser, for example, the microscopic process is the thermal 
motion of individual polymer chains, the body is the whole eraser, and the REV 
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can be a small piece of the eraser.  This piece is still large compared to individual 
polymer chains.  

As another example, consider an airplane wing made of aluminum.  The 
microscopic process can be activities of dislocations in aluminum, the body can 
be the entire wing, and the REV can be a tensile specimen of the aluminum.  The 
tensile specimen is much smaller than the wing, but much larger than the 
individual grains of the aluminum. 

The size of REV should be selected well between the two lengths scales.  If 
a volume is too small, the volume cannot be treated as a continuum.  If a volume 
is too large, the shape of the body affects the behavior of the volume.  
 
 Exercise.  Describe the separation of length scales in each of the three 
types of materials:  glasses, metals, and fiber-reinforced composites.  In each type, 
how large does the representative elementary volume need to be? 
 
 Exercise.  Continuum mechanics is sometimes applied to analyze living 
cells.  Can we really separate the two length scales?  What do we mean by 
representative elementary volume? 
 
 When a body deforms, does each small piece preserve its 
identity?  We have tacitly assumed that, when a body deforms, each small piece 
in the body preserves its identity.  Whether this assumption is valid can be 
determined by experiments.  For example, we can paint a grid on the body.  After 
deformation, if the grid is distorted but remains intact, then we say that the 
deformation preserves the identity of each small piece.  If, however, after the 
deformation the grid disintegrates, we should not assume that the deformation 
preserves the identity of each small piece. 
 Whether a deformation of the body preserves the identity of a small piece 
in the body depends on the size of the piece and the time scale over which we 
observe it.  A rubber, for example, consists of crosslinked long-chain molecules.  
If our grid is over a size much larger than the individual molecular chains, then 
deformation will not cause the grid to disintegrate.  By contrast, a liquid consists 
of molecules that can change neighbors.  A grid painted on a body of liquid, no 
matter how coarse the grid is, will disintegrate over a long enough time.  Similar 
remarks may be made for metals undergoing plastic deformation.  Also, in many 
situations, the body will grow over time.  Examples include growth of cells in a 
tissue, and growth of thin films when atoms diffuse into the films.  The combined 
growth and deformation clearly does not preserve the identity of each small piece 
of the body. 
 In these notes, we will assume that the identity of each small piece is 
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preserved as the body deforms. 
 
 Division of labor.  To analyze the inhomogeneous deformation in the 
body, the continuum theory regards the body as a sum of many pieces.  Each 
piece evolves in time through a sequence of homogeneous deformations. All the 
pieces are then put together to represent the inhomogeneous deformation of the 
entire body.  The division of labor results in two levels of analysis: 

• Homogeneous deformation of a piece. 
• Inhomogeneous deformation of a body. 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Each level of analysis requires three ingredients: 

• Geometry of deformation 
• Balance of forces 
• Model of material 

Continuum mechanics expresses the three ingredients into mathematical forms, 
which you will learn in this course. 
    

Inhomogeneous 
deformation 

Homogeneous 
deformation 
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  HOMOGENEOUS DEFORMATION 
 
 Stretch of a rod.  A rod deforms from one state to another state.  The 
two states are called, respectively, the reference state and the current state.  The 
length of the rod is L in the reference state, and l in the current state. The ratio of 
the two lengths defines the stretch of the rod: 

  λ =
l
L

.  

Whenever convenient, we follow the convention of using the uppercase of a letter 
to label a quantity in the reference state, and using the lowercase of the same 
letter to label the quantity in the current state. 
 
 
 
  
 
 
 The above definition uses the lengths of the entire rod in the two states, 
and is valid even when the deformation of the rod is inhomogeneous.  How do we 
find out if the deformation of the rod is homogeneous or inhomogeneous? We 
mark two material particles along the axis of the rod.  We measure the distance Y 
between the two particles when the rod is in the reference state, and then 
measure the distance y between the two particles when the rod is in the current 
state.  If the ratio y /Y  is the same for any choices of the two material particles, 
the deformation of the rod is homogeneous.   
 We write    
  y = λY . 
The deformation of the rod is said to be homogeneous if λ  is the same for any 
choices of the two material particles along the axis of the rod. 

 
 
  
  
 
 
 We can also mark equally spaced and parallel lines on the surface of the 
undeformed rod.  When we stretch the rod, the spacing between any two lines 
increases, but all lines are still equally spaced and parallel.  Stretching of the rod 
causes homogenous deformation.   
 If we bend the rod, the lines will no longer be parallel.  Bending of the rod 
causes inhomogeneous deformation.   
 

L l 

reference state                                     current state 

Y y 

reference state                                     current state 
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 Deformation of a body. Now consider a body undergoing a general 
state of homogenous deformation in the three-dimensional space.  When the 
body deforms from a reference state to a current state, how do we find out if the 
deformation is homogeneous?     
 A homogeneous deformation of the body is described as follows.  Consider 
a set of material particles in the body.  When the body is in the reference state, 
the set of material particles forms three families of parallel, uniformly-spaced 
lines.  When the body is in the current state, the set of material particles still 
forms three families of parallel, uniformly-spaced lines.  The homogeneous 
deformation may change the spacing between, and the orientation of, each family 
of the straight lines. 
 
 Deformation gradient.  We call each small part of the body a material 
particle, and each small part of the space a place.  As the body deforms, each 
material particle moves from one place to another place in the space, forming a 
trajectory. 
 Each place in the space has three coordinates.  When the body is in the 
reference state, a material particle occupies a place in the space, and the 
coordinates of the place are written X.  When the body is in the current state, the 
same material particle occupies a different place in space, and the coordinates of 
the space are written x.     
 We mark two material particles in the body.  When the body is in the 
reference state, the two material particles are at places X

0
 and X, and they are 

the two ends of a vector,   X − X0 . When the body is in the current state, the same 

two material particles are at places x
0

 and x, and they are the two ends of 

another vector,   x − x0 .  The deformation of the body maps the material vector in 
the reference state to the material vector in the current state: 
  x −x

0
=F X−X

0( ) . 
The operator F is known as the deformation gradient.  The deformation of the 
body is homogeneous if F is a linear operator, and is the same for any choices of 
the two material particles.  These words are too abstract, and we will describe 
more in the following pages. 
  
 
 
 
 
 
 
 
 

reference state                                                       current state 
 

Y 

X0 

X 

x0 

x 

y F 
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 The above expression calculates the place x of any material particle when 
the body is in the current state, provided we know (i) the place X of the same 
material particle when the body is in the reference state, (ii) the coordinate X

0
 of 

one particular material particle when the body is in the reference state, (iii) the 
coordinate x

0
 of this material particle when the body is in the current state, and 

(iv) the deformation gradient F. 
 
 Translation, rotation and stretch.  When a material particle moves 
from a place x

0
 in the reference state to a place X

0
 in the current state, the 

displacement of the material particle is u
0
= x

0
−X

0
.  When another material 

particle moves from a place  x  in the reference state to a place  X  in the current 
state, the displacement of the material particle is u = x −X .    
 
 
 
 
 
 
 
 
 
 
 
 
 
 Rewrite x −x

0
=F X−X

0( )  as 

  u−u
0
= F−I( ) X−X0( ) , 

where I is the identity tensor.  In the special case when the homogeneous 
deformation of the body is a rigid-body translation, the deformation gradient is 
the identity operator, F = I , and the two material particles have an identical 
displacement, u = u

0
.   

 In the general case, however, the homogeneous deformation also rotates 
and stretches the body, F ≠ I , and the two material particles have different 
displacements,   u ≠ u0 . The homogeneous deformation consists of three types:  
translation, rotation and stretch.  The deformation translates a particular 
material particle from the place X

0
 in the reference state to the place x

0
 in the 

reference state                                        current state 
 

Y 

X0 

X 

x0 

x 

y 

u0 

u 
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current state.  After this translation, with the position of the particular material 
particle fixed at the place x

0
 in space, we stretch and rotate the body using F.  

We will describe stretch and rotation later. 
 
  Material segment.  When the body is in the reference state, we mark a 
set of material particles that forms a segment of a straight line.  As the body 
undergoes a homogeneous deformation, the set of material particles behaves like 
a rod: it translates, rotates and stretches.  The homogeneous deformation of the 
body, however, does not bend the segment.  When the body is in the current state, 
the same set of material particles still forms a segment of a straight line.   
 We represent the set of material particles by a vector Y in the reference 
state, and by a vector y in the current state.  For example, consider the two 
material particles.  When the body is in the reference state, the two material 
particles are at places X

0
 and X, and they are the two ends of the vector, 

  Y = X − X0 . When the body is in the current state, the same two material 

particles are at the places x
0

 and x, and they are the two ends of another vector, 

  y = x − x0 .   
 The above geometric picture corresponds the algebraic formula:   
  y =F Y( ) . 
Thus, the deformation gradient maps a material segment in the reference state to 
the same material segment in the current state.   
 Compare the two definitions, l = λL  and y =F Y( ) .  We replace the length 

L of the rod in the reference state with the vector Y, replace the length l of the rod 
in the current state with the vector y, and replace the stretch λ  of the rod is with 
the operator F.  Just as the stretch is a measure of a homogeneous deformation of 
a rod, the deformation gradient is a measure of a homogeneous deformation of a 
body. 
  
 Deformation gradient is a linear map.  Let us study the linear 
algebra of the material segment and deformation gradient. When a body 
undergoes a homogeneous deformation, the material segments in the body in the 
reference state form one vector space, and the material segments in the body in 
the current state form another vector space.  
 Recall the defining attributes of a linear map F that maps one vector 
space to another vector space:  
 (i)  F αY( ) =αF Y( )  for every scalar α  and every vector Y. 
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 (ii)  F Y
1
+Y

2( ) =F Y1( )+F Y2( )  for any two vectors Y
1

 and Y
2

. 
These attributes are characteristic of a homogeneous deformation.   
 We interpret attribute (i) as follows. In the reference state, Y is a set of 
material particles that forms a straight segment, and αY  is another set of 
material particles that also forms a straight segment.  The two segments are 
parallel, and the length of the segment αY  is α  times that of the segment Y.  In 
the current state, the two sets of material particles still form two straight 
segments:  one is y =F Y( ) , and the other is in the same direction as y, and is α  
times long.   
 We interpret attribute (ii) as follows.  In the reference state, the three 
vectors  Y

1
, Y

2
 and Y

1
+Y

2
 are three sets of material particles that form a 

triangle.  In the current states, the same three sets of material particles form 
another triangle.  The sides of the triangle are the three vectors F Y

1( ) , F Y
2( )  

and F Y
1
+Y

2( ) . 
 
 
 
 
 
 

 
 

 
 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

reference state  

e1 e2 

e3 

current state 

F(e2) 

F(e1) 
F(e3) 
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 Components of a vector (i.e., a material segment).  A vector like 
Y  represents a physical object, in this case a material segment in the reference 
state.  All such vectors form a three-dimensional vector space.  We can choose 
three linearly independent vectors in the vector space as a basis.  Any vector in 
the space is a linear combination of the three base vectors.  The object—the 
vector—is independent of the choice of the basis.  The components of the vectors, 
however, do depend on the choice of the basis.  When a new basis is chosen, the 
components of the vectors transform. You have studied rules of transformation in 
linear algebra. 
 When the body is in the reference state, a set of material particles forms a 
parallelepiped, with the three edges represented by vectors e

1
, e

2
 and e

3
.  When 

the body is in the current state, the same set of material particles forms another 
parallelepiped, with three edges represented by vectors F e

1( ) , F e
2( )  and F e

3( ) . 

 When the body is in the reference state, consider a particular material 
particle.  Using this material particle as the starting point we can form many 
straight segments of material particles.  Each segment is a vector, and all such 
segments form a vector space.  Let three segments e

1
, e

2
 and e

3
 be a basis of the 

vector space. Any segment Y  is a linear combination of the three base vectors: 
  Y =Y

1
e
1
+Y

2
e
2
+Y

3
e
3

. 

The three quantities Y
1

, Y
2

 and Y
3
 are the components of the vector Y  relative 

to the basis e
1
, e

2
 and e

3
.  This algebraic formula has a familiar geometric 

interpretation.  The segment Y is a diagonal of a parallelepiped, while the vectors 
Y
1
e
1
, Y

2
e
2

 and Y
3
e
3

 are the edges of the parallelepiped. 

 We can write the above equation in shorthand: 
  Y =Y

K
e
K

. 
This way of writing follows a convention:  summation is implied over the 
repeated index. 
 
 In the current state, the vector y  is also a linear combination of the three 
base vectors: 
  y = y

1
e
1
+y

2
e
2
+y

3
e
3

. 

The three quantities y
1

, y
2

 and y
3

 are the components of the vector y  with 

respect to the basis e
1
, e

2
 and e

3
.  Following the summation convention, we 

write the above equation as 
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  y = y
i
e
i
. 

 In the above, we have used the same basis for both the reference state and 
the current state.  This practice will force us to abandon a convention we have 
adopted.  While the uppercase Y and the lower case y represent the same set of 
material particles in the reference and the current states, the vector Y

1
e
1
 and 

y
1
e
1
 no longer represent the same set of material particles.  The homogeneous 

deformation of the body transforms a parallelepiped in the reference state into 
another parallelepiped in the current state.  Indeed, Y

1
e
1
 represents the set of 

material particles that forms one edge of the parallelepiped when the body is in 
the reference state.  The deformation F will map this set of material particles to 
Y
1
F e

1( ) , which is in general different from y
1
e
1
. 

 
 Components of the deformation gradient.  Similarly, the 
deformation gradient F represents a deformation, and is independent of the 
choice of the basis.  The components of the deformation gradient do depend on 
the choice of the basis.  When a new basis is chosen, the components of the 
deformation gradient transform.  Vectors and linear operators are examples of a 
more general mathematical object:  tensor.   
 Consider a set of material particles.  In the reference state, the set of 
material particles lies on the base vector e

1
.  In the current state, the same set of 

material particles still lies on a straight segment, but the deformation causes the 
segment to stretch and rotate.  By the definition of the deformation gradient F, in 
the current state, the set of material particles forms a segment represented by a 
vector   F e1( ) .  We also use e

1
, e

2
 and e

3
 as the basis for the vector space of the 

material segments in the current state.  The vector   F e1( )  is also a linear 
combination of the three base vectors.  Write 
  F e

1( ) = F11e1 +F21e2 +F31e3 . 

The three quantities F
11

, F
21

 and F
31

 are the components of the vector F e
1( )  with 

respect to the basis e
1

, e
2

 and e
3

.  Similarly, we can also consider the 

deformation of the material particles that lie on the base vectors e
2

 and e
3

.  We 

write 
  F e

2( ) = F12e1 +F22e2 +F32e3 , 

  F e
3( ) = F13e1 +F23e2 +F33e3 . 

 Following the summation convention, we write the above three equations 
as 
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  F e
K( ) = FiKei . 

The nine quantities iKF  are the components of the deformation gradient relative 
to the basis e

1
, e

2
 and e

3
. To remind us of the distinct roles played by the two 

indices, we write the first index in lowercase, and the second index in uppercase.  
The nine components of the deformation gradient can be listed in a matrix: 

  

F
11
F
12
F
13

F
21
F
22
F
23

F
31
F
32
F
33

!

"

#
#
#
#

$

%

&
&
&
&

 

As a convention, the first index indicates the row, and the second the column.  
The first column of the matrix, F

i1
, are the three components of an edge vector of 

the parallelepiped, F e
1( ) .  Similarly, the second and third columns of the matrix 

are the components of the other two edge vectors of the parallelepiped. In general, 
the matrix of the deformation gradient is not symmetric. 
 
 Write linear map using components.  Write the linear map as 

  
y =FY

=F Y
1
e
1
+Y

2
e
2
+Y

3
e
3( )

=Y
1
F e

1( )+Y2F e2( )+Y3F e3( )
 

We then write F e
1( ) , F e

2( )  and F e
3( )  as linear combinations of the base 

vectors, so that 

  

y = F
11
Y
1
+F

12
Y
2
+F

13
Y
3( )e1

+ F
21
Y
1
+F

22
Y
2
+F

23
Y
3( )e2

+ F
31
Y
1
+F

32
Y
2
+F

33
Y
3( )e3

 

Consequently, the three components of the vector y  are  

  

y
1
= F

11
Y
1
+F

12
Y
2
+F

13
Y
3

y
2
= F

21
Y
1
+F

22
Y
2
+F

23
Y
3

y
3
= F

31
Y
1
+F

32
Y
2
+F

33
Y
3

 

Using the summation convention, we write the above three equations as 
  y

i
= F

iK
Y
K

. 
 Using these components, we write the linear relation y =FY  as 
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y
1

y
2

y
3

!

"

#
#
#
#

$

%

&
&
&
&

=

F
11
F
12
F
13

F
21
F
22
F
23

F
31
F
32
F
33

!

"

#
#
#
#

$

%

&
&
&
&

Y
1

Y
2

Y
3

!

"

#
#
#
#

$

%

&
&
&
&

   

We have written the linear map in several equivalent ways: in boldfaced letters 
y =FY , in longhand, in shorthand and using a matrix. 
 
 Inner-product space.  So far we have only used the property of a vector 
space without invoking length and angle.  Our space, however, does equip with 
the inner product.  So we can speak of the distance between two material 
particles, and the angle between two lines of material particles.   
  
  
 
 
 
 
 
 
 When the body is in the reference state, we choose a set of material 
particles that forms a unit cube. The three edges of the unit cube form an 
orthonormal basis, e

1
, e

2
 and e

3
.  When the body is in the current state, the 

same set of material particles forms a parallelepiped. The deformation gradient F 
maps the three base vectors to the three edges of the parallelepiped, F e

1( ) , 

F e
2( )  and F e

3( ) . 
 
 Exercise.  A body undergoes a shear deformation.  Mark a set of material 
particles in the body.  When the body is in the reference state, the set of material 
particles forms a unit cube.  When the body is in the current state, the same set of 
material particle forms a parallelepiped, as shown in the figure.  The dimension 
normal to the paper (not shown) remains unchanged.  Write the deformation 
gradient for this deformation. 
 
 
 
 
 
 
 
 
  reference state                           current state          

1 

1 

1 

γ 1 

F(e3) 
 

F(e2) F(e1) 

reference state                                     current state 

e1 
e2 

e3 
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 Exercise.  A rectangular block deforms into another rectangular block.  
In the reference state, the lengths of the edges of the rectangular block are of 
lengths L

1
, L

2
 and L

3
.  In the current state, the corresponding edges of the 

rectangular block are of lengths l
1
, l
2

 and l
3

.  The rectangular block in the two 

states has the same orientation.  Write the deformation gradients for the 
following situations. 

(a) The two blocks have the same orientation. 
(b) The block in the current state is rotated 90 degrees around the axis of l

3
. 

(c) The block in the current state is rotated 30 degrees around the axis of l
3

.    

 
 Exercise.  In the reference state, a rectangular block of a material has 
edges of lengths 1, 2 and 3.  We set coordinates in the direction of the three edges 
of the block.  The block undergoes a homogeneous deformation and becomes a 
parallelepiped. The homogeneous deformation is characterized by the 
deformation gradient 

  F =

4 2 1

1 4 2

1 2 4

!

"

#
#
#
#

$

%

&
&
&
&

 

Calculate the vectors formed by the three edges of the parallelepiped.  Calculate 
the lengths of, and angles between, the three edges of the parallelepiped.  
 
 Rigid-body rotation does not affect the state of matter.  Green 
deformation tensor.  The unit cube deforms into the parallelepiped by 
changing shape, size, and orientation.  Only the shape and size of the 
parallelepiped affect the state of matter.  Once the shape and the size of the 
parallelepiped is fixed, the state of matter is fixed, and is unaffected by any rigid-
body rotation of the parallelepiped.   
 The shape and the size of the parallelepiped are fully specified by the 
lengths of, and the angles between, the three edges of the parallelepiped.  The 
three lengths and the three angles by themselves do not form a tensor.  The six 
quantities, however, are related to the six inner products of the three edge vectors. 
The inner product of two edge vectors F e

K( )  and F e
L( )  of the parallelepiped is 

designated as C
KL

: 

  C
KL
= F e

K( )( ) ⋅ F eL( )( ) . 
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The six quantities C
KL

 together form a tensor, known as the Green deformation 
tensor.  This tensor is positive-definite and symmetric.  
 The vector F e

K( )  has three components F
1K
,F
2K
,F
3K

.  The vector F e
L( )  

has three components F
1L
,F
2L
,F
3L

.  The inner product of the two vectors is 

  C
KL
= F

1K
F
1L
+F

2K
F
2L
+F

3K
F
3L

. 
Using the summation convention, we write this inner products as 
  C

KL
= F

iK
F
iL

. 
The above expression is also written as 
   C =FTF .  
 The components of the tensor form a matrix: 

  

C
11
C
12
C
13

C
21
C
22
C
23

C
31
C
32
C
33

!

"

#
#
#
#

$

%

&
&
&
&

 
This matrix is symmetric.  Each diagonal element of the matrix is the square of 
the length of an edge of the parallelepiped, and each off-diagonal element of the 
matrix is related to the angle between two edges of the parallelepiped.  
 Both F and C measure a homogeneous deformation of a body.  The 
deformation gradient F includes both the rotation and the distortion of the body.  
By contrast, the Green deformation tensor C measures the distortion only, and is 
unchanged when the body undergoes any rotation.  
 
 Exercise.  Show that the Green deformation tensor is symmetric and 
positive-definite. 
 
 Exercise.  A body undergoes a homogeneous deformation specified by a 
deformation gradient.  This deformation maps material particles in a unit cube in 
the reference state to a parallelepiped in the current state.  The shape of the 
parallelepiped depends on the orientation of the unit cube.  Let the lengths of the 
three edges of the parallelepiped be l

1
, l
2

 and l
3

.  Show that the sum l
1
2 + l

2
2 + l

3
3  is 

independent of the orientation of the unit cube. 
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 ADDITIONAL RESULTS OF HOMOGENEOUS DEFORMATION 
 
 A line of material particles.  A body undergoes a homogeneous 
deformation F from a reference state to a current state.  Consider a set of 
material particles in the body.  When the body is in the reference state, the set of 
material particles forms a segment of a straight line, of length L  and in the 
direction of unit vector M.  When the body is in the current state, the set of 
material particles remains as a segment of a straight line, but the segment 
stretches and rotates: the segment is of length l  and in the direction of unit 
vector m.   
 The deformation gradient F maps the segment in the reference state to 
the segment in the current state: 
  lm =F LM( ) . 

Recall the definition of the stretch of the line of material particles, λ = l /L , and 
we write the above equation as 
  λm =FM . 
Given a deformation gradient F , and given the direction M of a line of material 
particles in the reference state, this equation calculates the stretch λ  and the 
direction m of the line of material particles in the current state. 
   
 Exercise.  Show that 
     λ

2 = FM( )T
FM( ) = MT CM . 

 
 Exercise.  The inner product M ⋅m  gives the cosine of the angle between 
the two vectors—that is, the inner product tells us how much the deformation of 
the body rotates the line of material particles.  Show that this inner product is 
given by 

  M ⋅m =
MTFM

λ
. 

 
 Exercise.  A body undergoes a homogeneous deformation described by 
the deformation gradient 

  F =

4 2 1

1 4 2

1 2 4
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Consider a set of material particles that forms a segment of a straight line.   When 
the body is in the reference state, the material particles at the two ends of the 
segment are at two points (0,0,0) and (2,3,6).  Calculate the stretch and the 
direction of the segment when the body is in the current state. 
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 Two lines of material particles.  Recall the definition of the 
engineering shear strain.  Consider two sets of material particles.  In the 
reference state, the two sets of material particles form two orthogonal vectors.  In 
the current state, the two sets of material particles still form two vectors, but they 
are, in general, no longer orthogonal to each other.  Let the angle between the two 

lines of material particles in the current state be γπ −
2

.  The angle γ  is defined as 

the shear strain.  
   
 
 
 
 
 
 
 
 
 
 Consider two sets of material particles.  In the reference state, one set of 
material particles forms a unit vector M , and the other set of material particles 
forms a unit vector N ; the two vectors are orthogonal.  After the body undergoes 
a homogeneous deformation F, the two sets of material particles stretch by Mλ  
and Nλ , and are in the directions of two vectors m and n.  Each set of material 
particles is linearly mapped by the deformation: 
  λ

M
m =FM , 

  λ
N
n =FN . 

Taking inner products of the vectors, we obtain that 

  λ
M
λ
N
mTn = FM( )

T
FN( ) . 

On the left-hand side, the inner product gives the cosine of the angle between the 

two vectors, mTn = cos
π
2
−γ

"

#
$

%

&
'= sinγ .  Consequently, the above expression can be 

written as 

  sinγ =
FM( )

T
FN( )

λ
M
λ
N

. 

Given the directions of two orthogonal lines of material particles in the reference 

reference state                                        current state          

M 
 

N 
 m 

 

n 
 

π
2
−γ
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state, M and N, and given the deformation gradient F, the above equation 
calculates the shear strain associated with the two lines of material particles in 
the current state. 
 
 Exercise.  Show that 

  
   
sinγ = MT CN

λMλN

. 

This result confirms that the angle between two lines of material particles do not 
change when the body undergoes a rigid-body rotation. 
 
 Exercise.  A body undergoes a homogeneous deformation described by 
the deformation gradient 

  F =

4 2 1

1 4 2

1 2 4

!
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Consider two sets of material particles.   When the body is in the reference state, 
one set of material particles forms a straight line passing through two points 
(0,0,0) and (2, 3, 6), and the other set of material particles forms a straight line 
passing through two points (0,0,0) and (-6, -2, 3).  Calculate the angle between 
the two lines of material particles when the body is in the current state. 
 
 A volume of material particles.  Once again consider a homogeneous 
deformation F that changes a unit cube to a parallelepiped.  Let the three edges of 
the parallelepiped be the vectors a, b and c.  The volume of the parallelepiped is 
a×b( ) ⋅c .  Recall that the three vectors are the columns of the matrix F.  Further 

recall that detF = a×b( ) ⋅c .  Consequently, the volume of the parallelepiped is 

detF .    
 We next generalize the above result to a homogeneous deformation of a 
body of any shape.  The body occupies a region of volume of V in the reference 
state, and occupies another region of volume v in the current state.  The two 
volumes are related as 
   v =V detF . 
Thus, the deformation gradient is expected to obey detF >0 .  The ratio of the 
volumes in the two states is often written in shorthand as J = detF . 
 
 Inverse map.  A linear map F is singular when detF =0 .  A theorem in 
linear algebra says that, if and only if the map is nonsingular, detF ≠0 , the linear 
map can be inverted.  Write the inverse of F as F−1 .  Consider a set of material 
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particles in the body.  When the body is in the current state, the set of material 
particles forms a vector y.  When the body is in the reference state, the set of 
material particles forms a vector Y.  The two vectors relate to each other by the 
maps: 
  y =FY , 
  Y =F−1 y( ) . 
In general, we require that the deformation gradient be nonsingular. 
 
 A plane of material particles.  Consider a set of material particles.  In 
the reference state, the set of material particles lies in a region in a plane, unit 
normal N and area A.  In the current state, the same set of martial particles is lies 
in a region in another plane, unit normal n and area a.  The deformation maps 
the same set of material particles from one region in the reference state to the 
other region in the current state.   
 The body may undergo a shear deformation relative to the plane.  
Consider a line of material particles.  When the body is in the reference state, the 
line of material particles is normal to the plane of material particle.  When the 
body is in the current state, the line of material particles may no longer be normal 
to the plane of material particles. Consequently, when the body shears relative to 
the plane, the two normal directions N and n consist of two distinct sets of 
material particles.  The use of the uppercase and lowercase of the same letter is 
an exception to our convention.   
 We want to relate n and a to N and A.  Define area vectors a = an  and 
A = AN .  Consider a tilted cone with the plane as the base, and an arbitrary point 
in space as the apex.  Pick a material particle in the plane.  Consider the segment 
of the line of material particles from the apex to the point.  Denote the segment 
by vector Y when the body is in the reference state, and by y when the body is in 
the current state.  The volume of the cone is V = Y ⋅A /3  in the reference state, 
and is v = y ⋅a /3  in the current state.  Recall that y =FY  and JVv = , so that 
  YTFTa = JYTA  
This expression equates two scalars.  Each scalar is an inner product of one vector 
and another vector Y.  Because the equation holds for any arbitrary pick of the 
material particle in the base of the cone, the equation must hold for arbitrary 
vector Y.  Consequently, the above equation implies an equation between two 
vectors: 
  FTa = JA . 
This relation is known as the formula of Nanson.  In terms of components, this 
formula is 
  an

i
F
iK
= JAN

K
.   

When the deformation gradient is known, this equation can be used to calculate 
n and a in terms of N and A. 
 
 Exercise.  A body undergoes a homogeneous deformation described by 
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the deformation gradient 

  F =

4 2 1

1 4 2

1 2 4
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In the reference state, a set of material particles lies on a plane, within a region of 
unit area; the unit vector normal to the plane is (2/7, 3/7, 6/7). The homogeneous 
deformation moves the same set of material particles to places that lie within a 
region of some other shape, on a plane of some other direction.  Calculate the 
area of the region and the unit vector normal to the plane in the current state. 
 
 Principal directions of a deformation.  When a rod is pulled, it 
elongates in the axial direction and contracts in the two transverse directions. 
Consider a set of material particles in the rod.  When the rod is in the reference 
state, the set of material particles form a unit cube with edges in the axial and 
transverse directions of the rod.  When the rod is in the current state, the same 
set of material particles forms a rectangular block.   
 Now consider another set of material particles.   When the rod is in the 
reference state, the set of material particles forms a unit cube with edges not in 
the axial and transverse directions of the rod.  When the rod is in the current 
state, the same set of material particles forms a parallelepiped. 
 
 
 
 
 
 
 As a further example, consider a body undergoing a shear deformation.  
Consider a set of material particles in the body.  When the body is in the 
reference state, the set of material particles forms a unit cube.  When the body is 
in the current state, the same set of material particles forms a parallelepiped. 
 Now consider another set of material particles.  When the body is in the 
reference state, the set of material particles forms a unit cube oriented in a 
particular direction, such that, when the body is in the current state, the same set 
of material particles forms a rectangular block. 
 
 
 
 

reference state                                    current state 

reference state                           current state          



For the latest version of this document see http://imechanica.org/node/538  Z. Suo 

August 31, 2017  Finite Deformation:  General Theory 20 

 
   
 
 
 
 We now generalize these observations to a body undergoing an arbitrary 
homogeneous deformation F.  Consider a set of material particles.  When the 
body is in the reference state, the set of material particles forms a unit cube.  
When the body is in the current state, the same set of material particles forms a 
parallelepiped.  The shape of the parallelepiped in the current state depends on 
the orientation of the unit cube in the reference state.   
 For a particular choice of the orientation of the unit cube, however, the 
deformed shape in the current state can be a rectangular block.  The deformation 
stretches the unit cube into a rectangular block, and also rotates the rectangular 
block.  The directions of the three edges of the unit cube in the reference state are 
called the principal directions of the deformation. The lengths of the three edges 
of the rectangular block in the current state are called the principal stretches.  We 
next use the deformation gradient F to calculate the principal directions and 
principle stretches, as well as the rotation between the unit cube and rectangular 
block. 
 
 Exercise.  According to a theorem in linear algebra, a symmetric 
operator has three real eigenvalues.  Furthermore, if the eigenvalues are distinct, 
the corresponding eigenvectors are orthogonal to one another. Prove this 
theorem.  What happens if the three eigenvalues are not distinct? 
 
 Exercise.  A body undergoes a homogeneous deformation F from a 
reference state to a current state.  The deformation gradient F maps a straight 
line of material particles in the reference state to a straight line in the current 
state.  As the body deforms, the line of material particles rotate and stretch.  The 
stretch of the line of material particles depends on the orientation of the line in 
the reference state.  Determine the orientation of the straight line that maximize 
or minimize the stretch.    
  
 Eigenvectors of the Green deformation tensor.  The Green 
deformation tensor C is symmetric and positive-definite.  According to a theorem 
in linear algebra, a symmetric and positive-definite matrix has three orthogonal 
eigenvectors, along with three real and positive eigenvalues. 
 Let Mbe the unit vector in the direction of an eigenvector of C, and α  be 
the associated eigenvalue.  According to the definition of the eigenvalue and 
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eigenvectors, we write 
  CM =αM . 
 The deformation causes the line of material particles to stretch by λ , 
which is calculated from 
     CMMT=2λ . 
A comparison of the above two expressions gives that 
  λ2 =α . 
The eigenvalue of C is the principal stretch squared.  
 Consider two lines of material particles.  When the body is in the 
reference state, the two lines are orthogonal.  When the body is in the current 
state, in general, the two lines are not orthogonal.  The change in the angle 
between the two lines measures the shear.  However, if in the reference state the 
two lines of material particles are in the directions of two orthogonal eigenvectors, 
in the current state the two lines of material particles will remain orthogonal.  
This property can be verified as follows.  Let M

1
 and M

2
 be the unit vectors in 

the directions of two orthogonal eigenvectors of C.  Let λ
1

 and λ
2

 be the two 
principal stretches.   In the current state, the two lines of material particles are in 
the directions of unit vectors m

1
 and m

2
.  We know that 

  λ
1
m
1
=FM

1
, 

  λ
2
m
2
=FM

2
. 

The inner product of the two vectors gives that  
  λ

1
λ
2
m
1
⋅m

2
=M

1
⋅ CM

2( ) .   

Because M
2

 is an eigenvector, CM
2
= λ

2
2M

2
.  Recall that M

1
 and M

2
 are 

orthogonal,M
1
⋅M

2
=0 , so that m

1
⋅m

2
=0 .  The deformation rotates both lines 

of material particles, but keeps the two lines orthogonal to each other. 
 Here is how we choose a particular set of material particles.  When the 
body is in the reference state, the set of material particles form a unit cube whose 
edges are in the directions of three orthogonal eigenvectors of the deformation 
tensor C. When the body is in the current state, the same set of material particles 
forms a rectangular block, with the three edges of the length of the principal 
stretches.  The rectangular block may be rotated from the unit cube. 
 
 Exercise.  A body undergoes a homogeneous deformation described by 
the deformation gradient 
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  F =
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• Calculate the principal directions of the deformation in the reference state  
• Calculate the principal stretches.   

Calculate the principal directions of the deformation in the current state.   
 
 Exercise.  A body undergoes a shear deformation.  Consider a set of 
material particles in the body.  When the body is in the reference state, the set of 
material particles is a unit cube.  When the body is in the current state, the same 
set of material particle is a parallelepiped, as shown in the figure.  The dimension 
normal to the paper (not shown) remains unchanged.  Calculate the principal 
directions and principal stretches. 
 
 
 
 
 
 
 
 
 
 
 
 Represent a symmetric operator in terms of its eigenvectors 
and eigenvalues.  Recall a procedure in linear algebra.  Let the orthonormal 
eigenvectors of a symmetric operator C be M

1
,M

2
,M

3
 and the corresponding 

eigenvalues be α
1
,α
2
,α
3

.  Write   

  G = M
1
,M

2
,M

3
!
"

#
$ , 

and 

  C =

α
1
0 0

0 α
2
0

0 0 α
3

!

"

#
#
#
#

$

%

&
&
&
&

. 

The operator C can be represented by 
  C =G CGT . 
 We can verify this representation as follows.  Let Y be a vector.  Because 

reference state                           current state          

1 

1 

1 

γ 1 
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M
1
,M

2
,M

3
 are linearly independent, we can write any vector Y as a linear 

combination 
     Y =Y1M1 +Y2M2 +Y3M3 . 

Here Y
1
,Y
2
,Y
3

 are components of the vector Y in the three directions M
1
,M

2
,M

3
.  

Note that 
  CY =Y

1
α
1
M
1
+Y

2
α
2
M
2
+Y

3
α
3
M
3

. 

Also note that 
  G CGT( )Y =Y1α1M1

+Y
2
α
2
M
2
+Y

3
α
3
M
3

. 

A comparison of the above two expressions confirms that C =G CGT . 
 
 Stretch tensor.  The Green deformation tensor C is a symmetric, 
positive-definite tensor.  Define another symmetric, positive-definite tensor U by 
  C =U2  
The tensor U is called the stretch tensor.   
 Given C, we can calculate the stretch tensor U as follows.  Let the 
orthonormal eigenvectors of a symmetric operator C be M

1
,M

2
,M

3
 and the 

corresponding eigenvalues be α
1
,α
2
,α
3

.  Write   

  G = M
1
,M

2
,M

3
!
"

#
$ , 

and 

  C =

α
1
0 0

0 α
2
0

0 0 α
3

!

"

#
#
#
#

$

%

&
&
&
&

. 

The operator C can be represented by 
  C =G CGT .  
 Because C is positive-definite, we define three positive roots (the stretches) 

λ
1
= α

1
,λ
2
= α

2
,λ
3
= α

3
.  We can form another diagonal matrix: 

  U =

λ
1
0 0

0 λ
2
0

0 0 λ
3

!

"

#
#
#
#

$

%

&
&
&
&

. 

The stretch tensor is given by 
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  U =G UGT . 
We can readily confirm that U is symmetric and positive-definite, and C =U2 . 
 Both C and U are symmetric and positive-definite.  The two operators 
have the same eigenvectors.  Each eigenvalue of C is a principal stretch squared.  
Each eigenvalue of U is a principal stretch.  
 
 Polar decomposition.  Here is yet another theorem in linear algebra.  
Let F be a linear operator.  The operator is nonsingular, i.e., 0det ≠F .  The 
linear operator can be written as a product:  
  RUF = , 
where R is an orthogonal operator, satisfying IRR =T , and U is a symmetric, 
positive-definite operator.  Writing a linear operator in this way is known as polar 
decomposition. 
 The proof of this theorem is straightforward.  Because F is nonsingular, 
the product FTF  is a symmetric, positive-definite operator.  Thus, we can find a 
symmetric, positive-definite operator U to satisfy 2UFF =T .  Furthermore, we 
can confirm that FU−1  is an orthogonal operator, namely, 

  FU−1( )
T

FU−1( ) = U−1FT( ) FU−1( ) =U−1U2U−1 = I . 

  
 Exercise.  A body undergoes a homogeneous deformation described by 
the deformation gradient 
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Calculate U and R. 
 
 
 
 
 
 
 
 
 
 
 

reference state                        intermediate state                         current state  

U R 

F 

stretch rotate 

1 
1 1 

λ1 
λ2 

λ3 λ1 
λ2 

λ3 
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 Geometric interpretation of polar decomposition.  Consider a set 
of material particles in the body.  When the body is in the reference state, the set 
of material particles forms a unit cube, whose three edges are in the directions of 
the eigenvectors of the deformation tensor C.  In the current state, the block 
becomes a rectangular block, whose three edges are of the length of the principal 
stretches.  The rectangular block may be rotated from the unit cube.   
 The multiplication RUF =  means two linear maps in succession.  For 
example, start with a set of material particles that forms a unit cube in the 
reference state, with the edges of the cube oriented in the directions of the 
eigenvectors of U.   
 The operator U stretches in the unit cube into a rectangular block in an 
intermediate state.  Because the three edges of the unit cube are in the directions 
of the eigenvectors of U, the rectangular block in the intermediate state does not 
rotate relative to the unit cube in the reference state.   
 The operator R then rotates the rectangular block in the intermediate 
state to the rectangular block in the current state.  Because R is a rotation 
operator, the rectangular block is rotated as a rigid body, with no stretch. 
 
 Exercise.  A body undergoes a homogeneous deformation F from a 
reference state to a current state.  Mark a set of material particles in the body.  
When the body is in the reference state, the set of material particles lies on the 
surface of a unit sphere.  What do the operators U, R and F do to this set of 
material particles?  
   
 Exercise.  Show that a non-singular linear operator F can be written as 
  F = VR , 
where R is an orthogonal operator, and V a symmetric operator.  When F is the 
deformation gradient, interpret the roles of V and R in geometric terms. V is 
known as the left stretch tensor. 
 
 Displacement gradient.  When a body undergoes a homogeneous 
deformation, a material particle in the body moves from position X in the 
reference state to position x in the current state.  The displacement of the 
material particle is  
  u = x −X . 
If the body undergoes a rigid-body translation, all material particles in the body 
move by the same displacement.  If the body also rotates and stretches, however, 
different material particles in the body can move by different displacements.  
Consider another material particle, whose position is X

0
 in the reference state 
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and is x
0

 in the current state.  The displacement of this material particle is 

  u
0
= x

0
−X

0
.  

Define a new tensor H by 
  u−u

0
=H X−X

0( )  

The tensor H is called the displacement gradient.  Note that Y =X−X
0

 and 

y = x −x
0

.  A comparison with y =F Y( )  gives that 

  H =F−I . 
 
 Small-strain approximation.   Recall that C =FTF .  We can express 
the Green deformation tensor in terms of the displacement gradient: 
  C =H+HT +HTH+I . 
When all the components of the displacement gradient is small, H

iK
<< 1 , we can 

neglect the quadratic term, and write 
  C ≈H+HT +I . 
 Recall that in the small-strain approximation, the strain relates to the 
displacement gradient as 

  e =
1
2
H+HT( ) . 

Except for the factor 2 and the identity tensor, the above two expressions 
coincide.  In finite deformation, the Green deformation tensor C is a measure of 
deformation unaffected by rigid-body rotation.  The small-strain approximation 
is valid when all components of the displacement gradient are small.  
 
 Lagrange strain.  A quantity slightly different from the Green 
deformation tensor C is defined by 

  ( )ICE −=
2
1 , 

where I is the identity tensor.  The tensor E is called the Lagrange strain. 
 We can relate the general definition of the Lagrange strain to that 
introduced in describing a tensile bar (http://imechanica.org/node/5065).  
When the length of the bar increases from L to l, the stretch is defined by λ = l /L , 
and the Lagrange strain is defined as  

  η =
1
2
λ2 −1( ) . 

It was hard to motivate this definition in one dimension.  In three dimensions, 
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this definition can be motivated as follows.   
 A body undergoes a homogeneous deformation specified by the 
deformation gradient F.  Consider a set of material particles.  In the reference 
state, the set of material particles forms a segment of a straight line, length L and 
direction M.  In the current state, the same set of material particles still form a 
segment of a straight line, length l and direction m.  The two segments are 
related by lm = LFM .  The inner product of the vector gives l2 = L2MTCM .  The 
change in the length of the segments can be calculated from 
  l2 −L2 =2L2MTEM  
The homogeneous deformation causes the line of material particles to stretch by 
λ = l /L .  Consequently, the Lagrange strain of the element in direction M is 
given by 
  EMMT=η . 
Thus, once we know the tensor E, we can calculate the Lagrange strain η  of a line 
of material particles in any direction M. 
 The Lagrange strain relates to the displacement gradient as 

  E =
1
2
H+HT +HTH( ) . 

When all the components of the displacement gradient is small, H
iK
<< 1 , we can 

neglect the quadratic term, and the Lagrange strain coincides with the small-
strain approximation: 

  e =
1
2
H+HT( ) .
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  STRESS 
 
 Nominal stress. Subject to an axial force, the rod changes its length and 
cross-sectional area.  The nominal stress is defined by 

  nominalstress =
forceincurrentstate
areainreferencestate

. 

Let A be the cross-sectional area of the rod in the reference state, which is subject 
to no force.  Let P be the axial force in the current state.  The nominal stress is 
defined by 

  s =
P
A

. 

 
 
 

 
 
 
 
  
 We now generalize this definition to a body of an arbitrary shape 
undergoing a homogeneous deformation of an arbitrary type.  Consider a set of 
material particles.  When the body is in the reference state, the set of material 
particles lies on a plane of unit vector N, in a region of area A.  The vector AN  
represents the planar region as a vector, written as A = AN .  When the body is in 
the current state, the same set of material particles forms another planar region, 
and acting on the planar region is a force P.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 

N 
P 

reference state                                                       current state 

 

P A 
P 

reference state                                                       current state 
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 Define the nominal stress as an operator s that maps the area vector A in 
the reference state to the force P in the current state: 
  P = s A( ) . 
The shape of the region does not affect this definition.  The nominal stress is also 
known as the first Piola-Kirchhoff stress. 
 
 Nominal stress is a linear operator. Let us see why the stress should 
be a linear operator.  If the area vector is scaled by a scalar α , the force should 
also be scaled, so that  
   s αA( ) =αs A( ) . 
 Next consider two sets of material particles.  When the body is in the 
reference state, the two sets of material particles form area vectors A

1
 and A

2
.   

Because the shapes of the two regions do not affect the definition, we may choose 
the two regions as rectangular regions.  The vector sum A

3
= A

1
+A

2
 

corresponds to another planar region of material particles.  The three regions 
form the surfaces of a prism.  The cross section of the prism is shown in the figure.  
Note that if the normal vectors N

1
 and N

2
 point toward the exterior of the prism, 

N
3

 points toward the interior of the prism.  When the body is in the current state, 
the three sets of material particles deform to some other planar regions, and the 
forces acting on the three regions are P

1
= s A

1( ) , P
2
= s A

2( )  and P
3
= s −A

3( ) .  
The prism is a free-body diagram.  The forces acting on the three faces are 
balanced,P

3
+P

1
+P

2
=0 , so that 

  s A
3( ) = s A1( )+s A2( ) . 

We have confirmed that the nominal stress should be a linear operator. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Exercise.  A body is subject to a state of nominal stress s in the current 
state.  Consider a set of material particles.  When the body is in the reference 

N1 

N2 
N3 

reference state               current state  

P1 

P2 

P3 
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state, the set of material particles forms a three-dimensional region bounded by 
two surfaces.  One surface is flat, of area A and unit normal vector N.  The other 
surface is curved.  Calculate the total force acting on the curved surface. 
 
 Exercise.  Give a physical interpretation of the expression 
   s −A( ) = −s A( ) .  
  
 Components of nominal stress.  The preceding definition is 
independent the choice of the basis of the vector space.  We next choose an 
orthonormal basis e

1
,e
2
,e
3

.  Consider a set of material particles in the body.  
When the body is in the reference state, the set of material particles forms a unit 
cube, with the three edges coinciding with the three base vectors.  When the body 
is in the current state, the set of material particles for a parallelepiped.   
 The deformation maps the face of unit cube normal to e

1
 to a face of the 

parallelepiped.  Acting on the face of the parallelepiped is the force s e
1( ) .  This 

force is a vector, which is also a linear combination of the three base vectors: 
  s e

1( ) = s11e1 + s21e2 + s31e3 , 

where s
i1

 are the three components of the force relative to the basis e
1
,e
2
,e
3

.  
Similarly, we write 
  s e

2( ) = s12e1 + s22e2 + s32e3 , 

  s e
3( ) = s13e1 + s23e2 + s33e3 . 

The nine quantities s
iK

 are the components of the nominal stress. The first index 
shows the direction of the force in the current state, and the second index shows 
the direction of the vector normal to the face in the reference state.  To remind us 
of the distinct roles played by the two subscripts, we write the first subscript in 
lowercase, and the second subscript in uppercase.  
 Using the summation convention, we write the above three expressions as 
  s e

K( ) = siKei . 
The nine components of the nominal stress can be listed as a matrix: 

  

s
11
s
12
s
13

s
21
s
22
s
23

s
31
s
32
s
33

!

"

#
#
#
#

$

%

&
&
&
&

 

As a convention, the first index indicates the row, and the second the column.  In 
general, the matrix of the nominal stress is not symmetric. 
 The components of the nominal stress have clear physical significance.   
The first column of the matrix s

i1
 corresponds to the three components of the 
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force s e
1( ) , acting on the parallelepiped on the face whose normal in the 

reference state is e
1
. The force acting on the parallelepiped on the face whose 

normal in the reference state is −e
1
 is given by s −e

1( ) = −s e1( ) .   This algebra is 
consistent with a physical requirement:  the balance of the forces acting on the 
parallelepiped requires that the two forces acting on each pair of parallel faces of 
the parallelepiped be equal in magnitude and opposite in direction.  Similarly, the 
other two columns of the matrix of nominal stress, s

i2
 and s

i3
, are the forces 

acting on the other faces of the parallelepiped. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Stress-traction relation.  Consider again the set of material particles.  
When the body is in the reference state, the set of material particle forms a planar 
region of unit normal N and area A.  When the body is in the current state, the set 
of material particles forms a planar region of some other orientation and area.  In 
the current state, acting on the region is a force P.  Define the nominal traction T 
by the force acting on the planar region in the current state divided by the area of 
the region in the reference state: 
  T =P / A .   
Recall the definition of the nominal stress,P = s A( ) .  In particular, the area of the 
region A is a scalar, and the nominal stress is a linear operator, so that 
s AN( ) = As N( ) .  We obtain that 

  T = s N( ) . 
This relation connects the nominal stress and the nominal traction.   
 The stress-traction relation can be expressed in terms of the components 
relative to a basis of the vector space, e

1
,e
2
,e
3

.  The normal vector is a linear 
combination of the base vectors: 

1 

1 

1 

reference state               current state  

si1 

si2 

si2 

si3 

si3 

 

 si1 
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  N = N
1
e
1
+N

2
e
2
+N

3
e
3

. 
Recall the definition of the components of stress:  
  s e

K( ) = s1Ke1 + s2Ke2 + s3Ke3 . 
Consequently, the linear map of the vector is 

  

s N( ) = s11N1 + s12N2 + s13N3( )e1
+ s

21
N
1
+ s
22
N
2
+ s
23
N
3( )e2

+ s
31
N
1
+ s
32
N
2
+ s
33
N
3( )e3

 

Recall that T = s N( ) .  The traction is also a linear combination of the base 
vectors: 
  T =T

1
e
1
+T

2
e
2
+T

3
e
3

. 
A comparison of these expressions gives that 

  

T
1
= s
11
N
1
+ s
12
N
2
+ s
13
N
3

T
2
= s
21
N
1
+ s
22
N
2
+ s
23
N
3

T
3
= s

31
N
1
+ s
32
N
2
+ s
33
N
3

   

The relation can also be expressed in the matrix form: 

  

T
1

T
2

T
3

!

"

#
#
#
#

$

%

&
&
&
&

=

s
11
s
12
s
13

s
21
s
22
s
23

s
31
s
32
s
33

!

"

#
#
#
#

$

%

&
&
&
&

N
1

N
2

N
3

!

"

#
#
#
#

$

%

&
&
&
&

 

 The stress-traction relation is also written in shorthand by adopting the 
convention of summing over repeated indices:   
  T

i
= s

iK
N
K

. 
   
 Balance of forces.  The stress-traction relation can also be derived by 
balancing forces.  Once the state of stress of a material particle is specified by iKs , 
we know traction on all six faces of the block around the particle.  This 
information is sufficient for us to calculate the force acting on a plane of any 
direction.  
 Consider a set of material particles in the body.  When the body is in the 
reference state, the set of material particles forms a tetrahedron, with three faces 
on the coordinate planes, and one face on the plane normal to the unit vector N.  
Let the areas of the three triangles on the coordinate planes be KA , and the area 
of the triangle normal to N be A.  The geometry dictates that 
  A

K
= AN

K
. 
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 When the body is in the current state, the tetrahedron deforms to another 
tetrahedron, a part of a parallelepiped.  Regard this deformed tetrahedron in the 
current state as a free-body diagram.  On face A

1
, the force is s

i1
A
1

.  On face A
2

, 

the force is s
i2
A
2

.  On face A
3

, the force is s
i3
A
3

.  On face A , the force is T
i
A .  

That is, T
i
 is the force acting on the face in the current state divided by the area 

of the face in the reference state;  T
i
 is known as the normal traction.   

 Now balance the forces acting on the tetrahedron in the current state.   
Acting on each of the four faces is a surface force.  As the volume of the 
tetrahedron decreases, the ratio of area over volume becomes large, so that the 
surface forces prevail over the body force and the inertial force.  Consequently, 
the surface forces on the four faces of the tetrahedron must balance, giving 
  s

i1
A
1
+ s
i2
A
2
+ s
i3
A
3
=T

i
A . 

This equation, in combination with A
K
= AN

K
, gives 

  iiii TNsNsNs =++ 332211 . 
The stress-traction relation is an algebraic expression of a physical law:  forces 
acting on a tetrahedron are balanced.   
 
 Exercise.  A body undergoes a homogeneous deformation from a 
reference state to a current state.  Consider in the body a set of material particles. 
When the body is in the reference state, the set of material particles form a 
tetrahedron, with three faces 321 ,, AAA  on the coordinate planes, and the fourth 
face A intersects the three coordinate axes at 1, 2, and 3.  In the current state, the 

current state reference state 
1X

3X

2X

A2A

N

1A

3A

s
i2
A
2

T
i
A

s
i3
A
3

s
i1
A
1
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same set of material particles forms a tetrahedron of some other shape, and the 
forces acting on all faces are in the direction of 1X , with the forces on faces 

321 ,, AAA  being of magnitudes 4, 5, 6, respectively.  Calculate the force on face  A.  
Calculate the nominal stress tensor.      
 
 Balance of moments.  Let P be a pair of forces of equal magnitude but 
acting in the opposite directions.  The two forces act at two points separated by a 
vector r.  The moment of the pair of forces is M = r×P .  Recall how we calculate 
the cross product, and we write the components of the moment as 
  M

1
= r
2
P
3
−r
3
P
2

, 

  M
2
= r
3
P
1
−r
1
P
3

, 

  M
3
= r
1
P
2
−r
2
P
1
. 

  Now we balance the moments of the 
forces acting on the six faces of the 
parallelepiped.  Consider the pair of forces s

i1
 

acting on two parallel faces. Because the two 
faces are sheared relative to each other, the two 
forces are not along the same line:  the two forces 
have a moment.  The two forces acting on points 
separated by the vector F

i1
.  The moment of the 

two forces is the cross product of the two vectors.  
The components of the moment are 
  F

21
s
31
−F

31
s
21

, 

  F
31
s
11
−F

11
s
31

, 

  F
11
s
21
−F

21
s
11

. 
Forces on all six faces of the parallelepiped form three moments.  The balance of 
moments requires that the sum of the moments vanish: 
  F

2K
s
3K
−F

3K
s
2K
=0 , 

  F
3K
s
1K
−F

1K
s
3K
=0 , 

  F
1K
s
2K
−F

2K
s
1K
=0 . 

The summation is implied for the repeated index K, which represents the three 
pairs of faces.  The above three equations can be written in a more compact form:  
   s

iK
F
jK
= s

jK
F
iK

. 
This condition balances the moments acting on the parallelepiped.  In general, 
neither the matrix s

iK
, nor the matrix F

jK
, is symmetric.  However, the product 

s
iK
F
jK

 is a symmetric matrix. 

si1 

si1 

si2 

si2 

si3 

si3 

Fi1 

Fi3 

Fi2 
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  THERMODYNAMICS  
 
 A pair of forces does work to a rod. When a rod elongates from 
length l to length ll δ+ , the force P does work lPδ .  The force and the length are 
work-conjugate.    
 Recall the definitions of stretch and the nominal stress: 
  Ll λ= ,   sAP = .  
Consequently the work done by the force is 
  Pδl = ALsδλ . 
Since AL is the volume of the bar in the reference state, we note that  

  sδλ =
incrementof work in the  currentstate

volumein thereferencestate
. 

The nominal stress and the stretch are work-conjugate. 
 
 A set of forces does work to a parallelepiped.  We now generalize 
this definition to a body of an arbitrary shape undergoing a homogeneous 
deformation of an arbitrary type.  Once again consider the homogenous 
deformation that changes a unit cube in the reference state to a parallelepiped in 
the current state. When the parallelepiped undergoes an infinitesimal, 
homogeneous deformation, and becomes a slightly different parallelepiped, one 
edge vector of the parallelepiped changes by δF

i1
.  Associated with this 

infinitesimal deformation, the pair of forces s
i1

 do work, which is calculated by 
the inner product of the two vectors, 
s
i1
δF
i1

.  Similarly, another edge vector of 

the parallelepiped changes by δF
i2

, and 

the pair of forces s
i2

 do work s
i2
δF
i2

.  The 
third edge vector of the parallelepiped 
changes by δF

i3
, and the pair of forces s

i3
 

do work s
i3
δF
i3

.  Associated with the 
infinitesimal, homogeneous deformation 
of the parallelepiped, the forces acting on 
the six faces of the parallelepiped do work: 
  s

i1
δF
i1
+ s
i2
δF
i2
+ s
i3
δF
i3

. 
Using the summation convention, we write 

  s
iK
δF
iK
=

incrementof work in the  currentstate
volumein thereferencestate

. 

si1 

si1 

si2 

si2 

si3 

si3 

Fi1 

Fi3 

Fi2 
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 The forces acting on the block can be applied by a set of hanging weights.  
Associated with the infinitesimal deformation, the potential energy of the weights 
changes by  −s

iK
δF
iK

.  
   
 Free energy.  The deformation is taken to be isothermal—that is, the 
body is in thermal equilibrium with a large reservoir of energy, held at a fixed 
temperature. Thus, we will not treat the temperature as a variable.  You should 
have learned thermodynamics in a separate course.  For a reminder of the 
isothermal process and the Helmholtz free energy, see  
http://imechanica.org/node/4878.    
 Let W be the Helmholtz free energy of the block in the current state, 
namely, 

  W =
Helmholtz freeenergy in the  currentstate

volumein thereferencestate
.   

 The block and the weights together form a composite thermodynamic 
system.  The Helmholtz free energy of the composite is the sum of that of the 
block and the potential energy of the weights: 
  W − s

iK
F
iK

.     
The composite exchanges energy with the rest of the world by heat, but not by 
work. 
    
 Thermodynamic inequality.  When the composite is in a state of 
equilibrium, the Helmholtz free energy of the composite is minimum.  When the 
composite is not in a state of equilibrium, the Helmholtz free energy of the 
composite should only decrease.  These statements are summarized as  
  0≤− iKiK FsW δδ . 
The variation means the value of a quantity at a time minus that at a slightly 
earlier time.  The inequality means that the increase in the free energy is no 
greater than the work done.  As usual in thermodynamics, this inequality involves 
the direction of time, but not the duration of time.  The thermodynamic 
inequality holds for arbitrary, infinitesimal, homogeneous deformation.  The 
work done by the forces equals or exceeds the change in the free energy of the 
body.  The difference is called the dissipation.  
 Thermodynamics does not prescribe a rheological model, but places a 
constraint in constructing a rheological model. 
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  ELASTICITY 
 
 Thermodynamic equilibrium.  As a particular rheological model, the 
block is pictured as a nonlinear spring.  By this picture we mean that the block is 
assumed to be a reversible thermodynamic system.  The block is in 
thermodynamic equilibrium as it deforms.  The thermodynamic inequality is 
replaced with an equation: 
  δW − s

iK
δF
iK
=0 . 

In this model, the change in the Helmholtz free energy equals the work done by 
the forces.  The thermodynamic equation holds for arbitrary infinitesimal 
deformation δF

iK
. 

 The above statement implies that the Helmholtz free energy is a function 
of the deformation gradient: 
  W =W F( ) .  
According to the differential calculus, associated with an infinitesimal 
homogeneous deformation of the parallelepiped, the free energy changes by  

  ( )
iK

iK

F
F
WW δδ
∂

∂= F . 

 Combining the two expressions, we obtain that 

  
∂W F( )
∂F
iK

− s
iK

#

$

%
%

&

'

(
(
δF
iK
=0 . 

Because this thermodynamic equation holds for arbitrary infinitesimal 
deformation δF

iK
, we obtain that 

  ( )
iK

iK F
Ws
∂

∂= F . 

Once the function W F( )  is prescribed, the above equation gives the stress-strain 
relation, or the equation of state. 
 
 Rigid-body rotation and balance of moments.  The following two 
ideas are equivalent:  the free energy of the block is invariant with respect to the 
rigid-body rotation and the moments acting on the block are balanced. 
 The free energy is invariant when the block undergoing a rigid-body 
rotation.  Thus, the free energy depends on F through the deformation tensor C: 
    W =W C( ) . 

Recall that iLiKKL FFC =  and s
iK
=∂W /∂F

iK
.  We obtain that     

  s
iK
=2F

iJ

∂W C( )
∂C

JK

. 

This equation readily confirms that 



For the latest version of this document see http://imechanica.org/node/538  Z. Suo 

August 31, 2017  Finite Deformation:  General Theory 38 

   s
iK
F
jK
= s

jK
F
iK

. 
This is the expression for the balance of the moments acting on the block.  
  
 Models of elasticity.  A model of elasticity represents a material by 
relating strain and stress when the material undergoes homogeneous 
deformation. To specify the model, we need to specify the nominal density of the 
Helmholtz free energy as a function of the Green deformation tensor: 
  W =W C( ) . 

The tensor C is symmetric and has 6 independent components.  Thus, to specify 
an elastic material model, we need to specify the free energy as a function of the 6 
variables.  For a given material, such a function is specified by a combination of 
experimental measurements and theoretical considerations.  Trade off is made 
between the amount of effort and the need for accuracy.  Commonly used free-
energy functions are described in another set of notes 
(http://imechanica.org/node/14146). 
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  INHOMOGENEOUS DEFORMATION  
 
 Name a material particle by the coordinate of the place 
occupied by the material particle when the body is in a reference state.  
Subject to loads, the body deforms in a three-dimensional space.  Each small part 
of the space is called a place, labeled by its coordinate x.  Each small part of the 
body is called a material particle.  At a given time t, the material particle occupies 
a place in the space.  As time progresses, the material particle moves from one 
place to another.  The trajectory of the material particle is described by the place 
of the particle as a function of time, ( )tx .   
 
 
  
 
 
 
 
 
 
 
 We can name a material particle any way we like.  For example, we often 
name a material particle by using an English letter, a Chinese character, or a 
colored symbol—a red star for example.  When dealing with a large number of 
material particles, we need a systematic scheme.  For example, we name each 
material particle by the coordinate X of the place occupied by the material 
particle when the body is in a particular state.  
 
 
 
 
 
 
 
 
 

 
  
 

 

3x

2x

1x

( )tx

A 

B 

H 

C 

1X
2X

3X

A 

B 

H 

C 

reference state current state 
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 We call this particular state of the body the reference state.  We will use 
the phrase “the particle X” as shorthand for “the material particle that occupies 
the place with coordinate X when the body is in the reference state”.  In addition 
to being systematic, naming material particles by coordinates has another merit.  
Once we know the name of one material particle, we know the names of all its 
neighbors, and we can apply calculus. 
 Often we choose the reference state to be the state when the body is 
unstressed.  However, even without external loading, a body may be under a field 
of residual stress.  Thus, we may not be able to always set the reference state as 
the unstressed state.  Rather, any state of the body may be used as a reference 
state.   
 Indeed, the reference state need not be an actual state of the body, and 
can be a hypothetical state of the body.  For example, we can use a flat plate as a 
reference state for a shell, even if the shell is always curved and is never flat.  To 
enable us to use differential calculus, all that matters is that material particles can 
be mapped from the reference state to any actual state by a 1-to-1 smooth 
function. 

 
 As a body moves, every material particle in the body moves.  
Now we are given a body in a three-dimensional space.  We have set up a system 
of coordinates in the space, and have chosen a reference state of the body to name 
material particles.  When the body is in the reference state, a material particle 
occupies a place whose coordinate is X.  At time t, the body deforms to a current 
state, and the material particle X moves to a place whose coordinate is x.  The 
time-dependent field  

reference state current state at time t 

X ( )t,Xx
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  ( )t,Xxx =   
describes the history of deformation of the body.  The domain of this function is 
the coordinates of material particles when the body is in the reference state, as 
well as the time.  The range of this function is the coordinates of the places 
occupied by the material particles.  The function ( )t,Xx  gives the trajectory of 
every material particle in the body.  A central aim of continuum mechanics is to 
evolve the field of deformation ( )t,Xx  by developing an equation of motion. 
 The function ( )t,Xx  has two independent variables: X and t.  The two 
variables can change independently.  We next examine their changes separately. 
 
 Exercise.  Give a pictorial interpretation of the following field of 
deformation: 

  
( )

33

22

211 tan

Xx
Xx

tXXx

=
=

+= γ
 

Compare the above field with another field of deformation: 

  
( )

( )
33

22

211

cos
sin

Xx
tXx
tXXx

=
=

+=
γ

γ
 

 
 Displacement, velocity, and acceleration of a material particle.  
At time t, the material particle X occupies the place ( )t,Xx .  At a slightly later 
time tt δ+ , the same material particle X occupies a different place ( )tt δ+,Xx . 
During the short time between t and tt δ+ , the material particle X moves by a 
small displacement: 
  ( ) ( )ttt ,, XxXxx −+= δδ . 
 The velocity of the material particle X at time t is defined as 

  ( ) ( )
t

ttt
δ
δ ,, XxXxv −+= , 

or, 

  ( )
t
t

∂
∂= ,Xxv . 

The velocity is a time-dependent field, ( )t,Xv .   
 The acceleration of the material particle X at time t is 

  ( ) ( )
2

2 ,,
t
tt

∂
∂= XxXa . 
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The fields of velocity and acceleration are linear in the field of deformation 
( )t,Xx . 

 

 
 
 Exercise.  Given a field of deformation, 

  
( )

( )
33

22

211

cos
sin

Xx
tXx
tXXx

=
=

+=
γ

γ
 

Calculate the fields of velocity and acceleration.  
 
 Deformation gradient.  We have just interpreted the partial derivative 
of the function ( )t,Xx  with respect to t.  We next interpret the partial derivative 
of the function ( )t,Xx  with respect to X.  
 Consider two nearby material particles in the body.  When the body is in 
the reference state, the first particle occupies the place with the coordinate X , 
and the second particle occupies the place with the coordinate XX d+ .  The 
vector Xd  connects the places occupied by the two material particles when the 
body is in the reference state.  When the body is in the current state at time t, the 
first material particle occupies the place with the coordinate ( )t,Xx , and the 
second material particle occupies the place with the coordinate ( )td ,XXx + .  At 
time t, the two material particles are ends of a vector: 

reference state state at t and state at t + δt  

X 

xδ

( )t,Xx ( )tt δ+,Xx
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  dx = x X+dX,t( )−x X,t( ) . 

Note the difference between two ideas: ( ) ( )ttt ,, XxXxx −+= δδ  means the 
displacement of any single material particle at two different times, and 
dx = x X+dX,t( )−x X,t( )  means the distance between two material particles at a 

given time. 

 
 The Taylor expansion of the function ( )t,Xx  is 

  x
i
X+dX,t( ) = xi X,t( )+

∂x
i
X,t( )

∂X
K

dX
K

. 

Here the time t is fixed, and only the term linear in dX
K

 is retained.  The 
expansion is accurate when the two material particles are sufficiently close to 
each other—that is, when the vector Xd  is sufficiently short. 
 Rewrite the Taylor expansion as 

  dx
i
=
∂x
i
X,t( )

∂X
K

dX
K

. 

Recall the definition of the deformation gradient for a homogeneous deformation.  
For a time dependent, homogeneous deformation, the deformation gradient F is 
defined as the linear map from dX  in the reference state to dx  in the current 
state, namely, 
  dx =FdX . 
A comparison of the two expressions identifies that 

reference state current state at time t 

X 
X+dX 

( )t,Xx

( )td ,XXx +



For the latest version of this document see http://imechanica.org/node/538  Z. Suo 

August 31, 2017  Finite Deformation:  General Theory 44 

    ( )
K

i
iK X

txF
∂

∂= ,X . 

The field ( )t,XF  is the gradient of the field of deformation ( )t,Xx .  Thus, when a 
body undergoes a time-dependent, inhomogeneous deformation, at a fixed time a 
set of material particles near one another behaves just like homogeneous 
deformation.  Within this set of material particles, a straight segment of material 
particles in the reference state remains a straight segment in the current state, 
but is stretched and rotated.  The deformation gradient F maps the segment from 
the reference state to the current state, and is given by the gradient of the field 
( )t,Xx . 

 
 Exercise.  Given a field of deformation, 

  
( )

( )
33

22

211

cos
sin

Xx
tXx
tXXx

=
=

+=
γ

γ
 

Calculate the deformation gradient.  Is the deformation homogeneous? 
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  CONSERVATION OF MASS   
 
 When a body is in the reference state, a material particle occupies a place 
with coordinate X.  Consider a material element of volume around the particle. 
When the body is in a current state at t , the same material element deforms to 
some other shape.  Let ρ

R
 be the nominal density of mass, namely, 

  ρ
R
=
massof thematerialelement incurrentstate
volumeof thematerialelement inreferencestate

. 

 During deformation, we assume that the material element does not gain 
or lose mass, so that the nominal density of mass, ρ

R
, is time-independent.  If the 

body in the reference state is inhomogeneous, the nominal density of mass in 
general varies from one material particle to another.  Combining these two 
considerations, we write the nominal density of mass as a function of material 
particle:  
  ρ

R
= ρ

R
X( ) .   

This function is given as an input to our theory.  The conservation of mass 
requires that the nominal density of mass is independent of time. 

 
 

reference state current state 



For the latest version of this document see http://imechanica.org/node/538  Z. Suo 

August 31, 2017  Finite Deformation:  General Theory 46 

  CONSERVATION OF MOMENTUM 
 
 Body force.  Consider a material element of volume around material 
particle X.  When the body in the reference state, the volume of the element is 

( )XdV .  When the body is in the current state at time t, the force acting on the 
element is denoted by ( ) ( )XXB dVt, , namely, 

  ( )
statereferenceinvolume
statecurrentinforce, =tXB . 

The force ( ) ( )XXB dVt,  is called the body force, and the vector ( )t,XB  the 
nominal density of the body force.   The body force is applied by an agent external 
to the body.    
 
 Exercise.  Given a field of deformation: 

  
( )

( )
33

22

211

cos
sin

Xx
tXx
tXXx

=
=

+=
γ

γ
 

The body is in a gravitational field, and is of nominal density of 1000kg/m3.  The 
gravitational field is pointing down along the 2x  axis.  Calculate the nominal 
density of the body force due to gravitation in the current state at time t. 
 
 Inertial force.  The dynamics of a particle is governed by Newton’s 
second law: 
  Force = Mass times Acceleration. 
From this expression, we can regard the term “mass times acceleration” as the 
inertial force, acting in the direction opposite to that of the acceleration.  
Newton’s second law is then expressed as the balance forces acting on the particle, 
including the inertial force. 
 For a continuum body, we can regard the term 

  −ρ
R
X( )

∂2x X,t( )
∂t2

 

as a special type of the body force, called the inertial force.  
 
 Balance of forces.  The dynamics of a particle is governed by Newton’s 
second law: 
  Force = Mass times Acceleration. 
We now apply this law to a small block in a body.  In the reference state, the block 
is rectangular, with faces parallel to the coordinate planes, and of sides CBA ,, .  
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In the current state, the block deforms to some other shape.  In the free-body 
diagram of the block in the current state, we should include surface forces, body 
forces, and inertial forces.  (For clarity, in the figure only surface forces in 
direction 3 on the six faces of the block are indicated.)  Newton’s second law 
states that 

  

BCs
i1
X
1
+ A,X

2
,X

3
,t( )−BCsi1 X1 ,X2,X3,t( )

+CAs
i2
X
1
,X

2
+B,X

3
,t( )−CAsi2 X1 ,X2,X3,t( )

+ABs
i3
X
1
,X

2
,X

3
+C ,t( )− ABsi3 X1 ,X2,X3,t( )

+ABCB
i
X,t( )

= ABCρ
R
X( )

∂2x
i
X,t( )

∂t2

 

Dividing this equation by the volume of the block, ABC, we obtain that 

  
∂s
iK
X,t( )

∂X
K

+B
i
X,t( ) = ρR X( )

∂2x
i
X,t( )

∂t2
. 

 

 
 Divergence theorem.  In the following development, we will need the 
divergence theorem: 

  
∂f X( )
∂X

K

dV∫ = fN
K
dA∫ , 

where f X( )  is a field, N
K

 is unit vector normal to the surface.  The integrals are 

A=dX1 

B=dX2 

C=dX3 

reference state current state 
1X

2X
3X

( )tXXXs ,,, 32133

( )tCXXXs ,,, 32133 +

( )tXXXs ,,, 32131

( )tXXXs ,,, 32132

( )tXBXXs ,,, 32132 +

( )tXXAXs ,,, 32131 +
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over the volume of a region and the surface of a region, respectively.    
 
 An alternative approach to the balance of linear momentum.  
Consider an arbitrary part of the body.  In the current state, the combined forces 
acting on the part must vanish: 

  s
iK
N
K
dA∫ + B

i
−ρ

R
X( )

∂2x
i
X,t( )

∂t2

"

#

$
$

%

&

'
'
dV∫ =0 . 

The first integral is over the surface of the part in the reference state, and the 
second integral is over the volume of the part in the reference state. 
 According to the divergence theorem, we write 

  s
iK
N
K
dA∫ =

∂s
iK

∂X
K

dV∫ . 

A combination of the above expressions gives that 

  
∂s
iK

∂X
K

+B
i
−ρ

R
X( )

∂2x
i
X,t( )

∂t2

"

#

$
$

%

&

'
'
dV∫ =0 . 

This equality holds for arbitrary part of the body.  Consequently, the integrand 
must vanish. 
 
 Conservation of angular momentum.  Consider an arbitrary part of 
the body.  In the current state, the combined moments acting on the part must 
vanish: 

  

x
j
s
iK
N
K
dA∫ + x

j
B
i
−ρ

R
X( )

∂2x
i
X,t( )

∂t2

$

%

&
&

'

(

)
)
dV∫

= x
i
s
jK
N
K
dA∫ + x

i
B
j
−ρ

R
X( )

∂2x
j
X,t( )

∂t2

$

%

&
&

'

(

)
)
dV∫

 

According to the divergence theorem, we write 

  x
j
s
iK
N
K
dA∫ =

∂ x
j
s
iK( )

∂X
K

dV∫ = F
jK
s
iK
+ x

j

∂s
iK

∂X
K

#

$
%%

&

'
((dV∫ . 

We can similarly convert x
i
s
jK
N
K
dA∫  to an integral over volume.  Combining 

the above expressions and using the conservation of linear momentum, we obtain 
that  
  F

jK
s
iK
dV∫ = F

iK
s
jK
dV∫ . 
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This equality holds for arbitrary part of the body.  Consequently, the integrands 
must be equal: 
  F

jK
s
iK
= F

iK
s
jK

. 

This expression recovers what we know before.  Thus, the conservation of angular 
momentum leads to no new equations. 
 
 Weak statement of the balance of forces.  The balance of forces 
results in two equations: 
  KiKi NsT = , 

  ∂s
iK

∂X
K

+B
i
= ρ

R

∂2x
i

∂t2
. 

This pair of equations may be called the strong statement of the balance of forces.   
 Denote an arbitrary field by Δ

i
X( ) . Multiplying ( )XiΔ  to the two 

equations of the strong statement, integrating over the surface of the part and the 
volume of the part, respectively, and then adding the two, we obtain that 

  
∂s
iK

∂X
K

+B
i
−ρ

R

∂2x
i

∂t2
#

$
%%

&

'
((Δi dV∫ + T

i
− s
iK
N
K( )Δi dA∫ =0 . 

The integrals extend over the volume and the surface of the body. 
 Manipulate one term in the above equation: 

  

∂s
iK

∂X
K

Δ
i
dV∫ =

∂ s
iK
Δ
i( )

∂X
K

dV∫ − s
iK

∂Δ
i

∂X
K

dV∫

= s
iK
Δ
i
N
K
dA∫ − s

iK

∂Δ
i

∂X
K

dV∫
  

In the above, we have used the divergence theorem.   
 Consequently, we obtain that 

  s
iK

∂Δ
i

∂X
K

∫ dV = T
i
Δ
i
dA∫ + B

i
−ρ

R

∂2x
i

∂t2
%

&
''

(

)
**Δi dV∫ . 

The strong statement of the balance of forces implies that the above equation 
holds for any field ( )XiΔ .  This statement is known as the weak statement of the 
balance of forces.  The field ( )XiΔ  is called a test function.  
  
 Exercise.  Start with the weak statement of the balance of forces, and 
show that the weak statement implies the strong statement. 
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 THERMODYNAMICS OF INHOMOGENEOUS DEFORMATION 
  
 For homogeneous deformation, thermodynamics dictates that the 
increase in the free energy is no greater than the work done 
  δW ≤ s

iK
δF
iK

. 
The variation means the value of a quantity at a time minus that at a slightly 
earlier time.  The inequality involves the direction of time, but not the duration of 
time.  The thermodynamic inequality holds for arbitrary infinitesimal, 
homogeneous deformation.   
 We now confirm that so long as the material model satisfies the 
thermodynamic inequality, the inhomogeneous, time-dependent deformation 
also satisfies thermodynamics.  Interpret the test function as a virtual change in 
the deformation, Δ

i
X( )→δx

i
X( ) , so that ∂Δ

i
X( ) /∂XK →δF

iK
 and the weak 

statement becomes 

  s
iK
δF
iK∫ dV = T

i
δx
i
dA∫ + B

i
−ρ

R

∂2x
i

∂t2
$

%
&&

'

(
))δxi dV∫ . 

This statement is known as the principle of virtual work.  The virtual deformation 
δx
i
X( )  is unrelated to the actual deformation x

i
X,t( ) .   

 If the material model satisfies the thermodynamic inequality, 
δW ≤ s

iK
δF
iK

, a combination of the inequality and the principle of virtual work 
gives that 

  δW∫ dV ≤ T
i
δx
i
dA∫ + B

i
−ρ

R

∂2x
i

∂t2
%

&
''

(

)
**δxi dV∫  . 

This is the thermodynamic inequality for time-dependent, inhomogeneous 
deformation.  The left-hand side is the increment of the free energy of the body, 
and the right-hand side is the work done by the applied forces and the inertial 
force.  Thus, once the material model satisfies the thermodynamic inequality, 
δW ≤ s

iK
δF
iK

, the entire body also satisfies the thermodynamic model. 
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 INITIAL AND BOUNDARY VALUE PROBLEMS IN ELASTICITY 
 
 The ingredients of finite elasticity.  Model of elasticity.  We describe 
the state of each material particle by two tensors.  The deformation gradient F is 
the linear operator that maps a segment of a line of material particles in the 
reference state to a straight segment in the current state, y =FY .  The nominal 
stress s is the linear operator that maps an area vector of a planar region of 
material particles in the reference state to the force acting on the same region of 
material particles in the current state, P = sA .  We specify the model of elasticity 
by giving the Helmholtz free-energy function ( )FW .  The nominal stress relates 
to the deformation gradient by   

  ( )
iK

iK F
Ws
∂

∂= F . 

The function ( )FW  depends on F through the product FFT .  Such a material 

model conserves angular momentum, F
jK
s
iK
= F

iK
s
jK

.   

 Compatibility of deformation.  A body is represented by a set of material 
particles.  Each material particle is named by its place X when the body is in a 
reference state.  In the current state at time t, the material particle occupies the 
place with coordinate x.  The function ( )t,Xx  describes the deformation of the 
entire body in time.  The deformation gradient relates to the deformation 
function through   

  ( )
K

i
iK X

txF
∂

∂= ,X . 

 Balance of forces.  The body is prescribed with a field of mass density, 
ρ
R
X( ) . The body is subject to a field of body force ( )t,XB .  The balance of forces 

requires that 

  
∂s
iK
X,t( )

∂X
K

+B
i
X,t( ) = ρR X( )

∂2x
i
X,t( )

∂t2
. 

On part of the surface of the body, the traction is prescribed, so that 
  s

iK
X,t( )NK X( ) = prescribed .   

 
 Exercise.  We will be restricted to isothermal processes.  The body is in 
thermal contact with a reservoir of energy held at a fixed temperature.  This 
temperature is also assumed to be held in the body.  In the isothermal process, 
the principle of the conservation of energy is not used in formulating the 
continuum theory.  Why? 
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 Initial and boundary value problems.  We can combine the three 
equations and write 

  ∂
∂X

K

∂W F( )
∂F
iK

"

#

$
$

%

&

'
'
+B

i
X,t( ) = ρR X( )

∂2x
i
X,t( )

∂t2
. 

This equation, known as the equation of motion, is the partial differential 
equation that evolves the field of deformation ( )t,Xx  in time, subject to the 
following initial and boundary conditions. 
 Initial conditions are given by prescribing at time 0t  the places of all the 

particles, ( )0,tXx , and the velocities of all the particles, v X,t
0( ) . 

 For every material particle on the surface of the body, we prescribe either 
one of the following two boundary conditions.  On part of the surface of the body, 
tS , the traction is prescribed, so that 

  ( ) ( ) prescribed, =XX KiK Nts ,   for tS∈X . 
On the other part of the surface of the body, uS , the position is prescribed, so that 
  ( ) prescribed, =tXx ,  for uS∈X . 
 
 Now we have the basic equations.  What do we do next?  The 
above formulation of the boundary-value problem has existed for well over a 
century.  However, exploration of its consequences remains active to this day.  
Representative activities include 

• Model a specific elastic material by constructing a function ( )FW , by a 
combination of microcosmic modeling and experimental testing. 

• Model a specific phenomenon of elastic deformation by formulating a 
boundary-value problem. 

• Analyze such a boundary-value problem by analytic techniques, such as 
dimensional analysis and linear perturbation. 

• Analyze such a boundary-value problem by numerical methods, such as 
using commercial finite element package. 

Of course, you can also play another kind of game:  you can use the similar 
approach to formulate models for phenomena other than the deformation of an 
elastic body. 
 
 Finite element method.  The weak statement of the balance of forces is 
the basis for the finite element method (http://imechanica.org/node/324). Here 
I sketch the basic ideas.  These ideas are greatly amplified in a separate course on 
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finite element method.   
 In the weak statement, the volume integrals extend over the entire body, 
and the surface integral extends over the part of the surface of the body on which 
traction is prescribed.  The test function ( )XiΔ  is set to vanish on part of the 
surface where displacement is prescribed.  In addition to the weak statement of 
the balance of forces, three other ingredients of the boundary value problem are 
the conservation of mass: 
  ρ

R
= ρ

R
X( ) , 

the compatibility of deformation: 

  ( )
K

i
iK X

txF
∂

∂= ,X , 

and the model of material 

  s
iK
=
∂W F( )
∂F
iK

. 

The functions ρ
R
X( )  and W F( )  are prescribed. 

 Let N α X( )  be a set of functions defined in the body, known as the shape 

functions.  Interpolate the test function in terms of the shape functions: 
  Δ

i
X( ) = D

i
αN α X( )

α

∑ . 

This interpolation represents the test functions in terms of a set of discrete values 
D
i
α .  Because the test function is arbitrary, the values D

i
α  are also arbitrary. 

 Insert this expression into the weak statement, and we obtain that 

 s
iK

D
i
α ∂N

α

∂X
K

"

#
$$

%

&
''

α

∑∫ dV = T
i
D
i
αN α( )

α

∑ dA∫ + B
i
−ρ

R

∂2x
i

∂t2
"

#
$$

%

&
'' D

i
αN α( )

α

∑ dV∫ . 

The weak statement holds for arbitrary values of D
i
α .  This single equation is 

equivalent to a set of equations: 

  s
iK

∂N α

∂X
K

∫ dV = T
i
N α dA∫ + B

i
−ρ

R

∂2x
i

∂t2
$

%
&&

'

(
))N

α dV∫ . 

 The displacement is also interpolated using the same shape functions: 
  x

i
X,t( )− Xi = u

i
α t( )N α X( )

α

∑ . 

The compatibility of deformation and the material model are used to express the 
stress in terms of u

i
α t( ) .  Consequently, the weak statement becomes a set of 
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ordinary differential equations for u
i
α t( ) .  This set of ordinary differential 

equations is evolved using computer. 
 
 State of equilibrium.  Subject to a static load, a body can reach a state 
of equilibrium.  In the state of equilibrium, the deformation of the body no longer 
changes with time, and the field of deformation is time-independent, described 
by the function x X( ) .  This function characterizes the state of equilibrium. 

 The field of deformation function x X( )  is governed by the field equations 

  F
iK
=
∂x
i
X( )

∂X
K

, 

  
∂s
iK
X( )

∂X
K

+B
i
X( ) =0 , 

  ( )
iK

iK F
Ws
∂

∂= F , 

as well as time-independent boundary conditions.  These equations result in a 
boundary-value problem. 
 
 Exercise.  Develop the basic equations for the finite element method to 
solve static elasticity problems.  
 
 Stability of a state of equilibrium.  A body is subject to a static load.  
The static load may be represented by an idealized loading device, such as a dead 
weight or a constant pressure.   The body and the loading device together form a 
composite thermodynamic system.  This composite 
system interacts with the rest of the world by heat 
transfer, but not by work.  A state of equilibrium is 
stable if the state minimizes the Helmholtz free energy 
of the composite; see separate notes for a reminder of 
free energy (http://imechanica.org/node/4878). 
 The Helmholtz free energy of the composite is 
the sum of the Helmholtz free energy of the body and 
that of the loading device.  For example, if the static load 
is a dead weight, the Helmholtz free of the loading 
device is simply the potential energy of the dead weight, 
-Pl, where P is the weight (i.e., the fixed force) and l is 
the displace of the weight.  The free energy of the 

body 

weight 
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composite is 
      W F( )∫ dV −Pl , 

where the deformation gradient relates to the field of deformation by 

  F
iK
=
∂x
i
X( )

∂X
K

. 

The Helmholtz free energy is a functional of the field of deformation, x X( ) .  Of 

all possible field of deformation, a stable state of equilibrium minimizes the 
Helmholtz free energy of the composite. 
 
 Exercise.  A body is subject to a constant pressure on its surface.  The 
body is made of an elastic material characterized by the nominal density of 
Helmholtz free energy as a function of the deformation gradient, W F( ) .  Picture 

that the pressure is applied by some device.  The body and the device together 
form a composite system.  Write the Helmholtz free energy of the composite. 
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  ALTERNATIVE MATHEMATICAL REPRESENTATIONS 
 
 An idea in the continuum theory often has alternative mathematical 
representations. The alternative representations add no substance to the theory, 
but they appear in the literature so frequently that you should know them.  
Besides, alternative representations of an idea may shed light on the idea itself.  
Here we give a few examples.  You can find many more in textbooks.  
 
 True stress.  Subject to an axial force, the rod changes its length and 
cross-sectional area.  The true stress is defined by 

  truestress =
forceincurrentstate
areaincurrentstate

. 

In the current state, let P be the axial force, and a be the cross-sectional area of 
the rod.  The true stress is defined by 

  σ =
P
a

. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A 
P 

reference state                                                       current state 

P 

a 

A 

N 
P 

reference state                                                       current state 

n 

a 
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 We now generalize this definition to a body of an arbitrary shape 
undergoing a homogeneous deformation of an arbitrary type.  Consider a set of 
material particles.  When the body is in the current state, the set of material 
particles lies on a plane of unit normal vector n, in a region of area a.  The vector 
an  represents the planar region as a vector, written as a = an .  Acting on the 
planar region is a force P. 
 Define the true stress as the operator operator σ  that maps the area 
vector a to the force P: 
  P =σ a( ) . 
The true stress is also known as the Cauchy stress.  The true stress is also a linear 
operator. 
 
 The components of true stress.  The components of the true stress 
form a matrix.  Consider a unit cube in the body in the current state.  Each 
column of the matrix is the force acting on a face of the cube.    
 
 Stress-traction relation.  In the current state, consider a plane of unit 
normal vector n.  Define the true traction t as force acting on the plane divided by 
the area of the plane.  Consider a tetrahedron formed by the plane and the three 
coordinate planes.  The balance of forces acting on the tetrahedron requires that 
  t

i
=σ

ij
n
j
. 

The true stress maps one vector (the unit normal vector) to another vector (the 
true traction). 
 
 Balance of moments.  For a body in the current state, imagine a unit 
cube in the body orientated in the directions of a set of rectangular coordinates.  
The true stress σ

ij
 is defined as the force in direction i acting on a face of the cube 

of normal vector in direction j.  True stress is also known as the Cauchy stress.  
The balance of momentum requires that 
  σ

ij
=σ

ji
. 

 
 Relation between true stress and nominal stress. Consider a set of 
material particles.  In the reference state, the set of material particles forms a 
region represented by the area vector A.  After a homogeneous deformation F, 
the same set of material particles forms a region represented by the vector a.  The 
two area vectors are related by the formula of Nanson, FTa = JA .   
 We have expressed the force acting on the plane in the current state, P, in 
two ways: P =σ a( )  and P = s A( ) .  Thus, σ a( ) = s A( ) .  This expression, along 
with the formula of Nanson, becomes  

   σ a( ) =
s FTa( )
J

. 
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The expression equates two vectors.  Because the equation holds for arbitrary 
choice of a, we reach an expression that equates two tensors: 

  σ =
sFT

J
. 

Write this expression in terms of components: 

  σ
ij
=
s
iK
F
jK

J
. 

This expression relates the true stress and the nominal stress. 
 We have expressed the balance of moments in terms of the true stress 
σ
ij
=σ

ji
, as well as in terms of the nominal stress, s

iK
F
jK
= s

jK
F
iK

.  These two 

expressions are equivalent. 
  
 The second Piola-Kirchhoff stress.  Here is another redundant idea 
commonly in use.  Define the second Piola-Kirchhoff stress, KLS , by 

  KLKL ES δ=
statereferencetheinvolume

statecurenttheinwork . 

This expression defines a new measure of stress, KLS .  Because KLE  is a 
symmetric tensor, we can set KLS  to be symmetric.   
 Recall that we have also expressed the same work by iKiK Fs δ .  Equating 
the two expressions for work, we write 
  KLKLiKiK ESFs δδ = . 
Recall the definition of the Lagrange strain, 

   ( )KLiLiKKL FFE δ−=
2
1  .  

We obtain that  

  ( )iLiKiKiLKL FFFFE δδδ +=
2
1   

and 
  iKiLKLiKiK FFSFs δδ = . 
Here we have used the symmetry LKKL SS = .  In the above equation, each side is a 
sum of nine terms.  Each component of iKFδ  is an arbitrary and independent 
variation.  Consequently, the factors in front of each component of iKFδ  must 
equal, giving   
  iLKLiK FSs = . 
This equation relates the first Piola-Kirchhoff stress to the second Piola-Kirchhoff 
stress. 
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 Exercise.  For an elastic material, the nominal density of the Helmholtz 
free energy is a function of the Lagrange strain, ( )EW .  Starting from basic 
definitions and thermodynamic considerations, show that the second Piola-
Kirchhoff stress relates to the Lagrange strain as 

  ( )
KL

KL E
WS
∂
∂= E .
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  EVOLVING HOMOGENEOUS DEFORMATION IN TIME 
 
 A rod elongates as a function of time.  A rod is of length L in a 
reference state, and is of length ( )tl  at time t.  The length of the rod in the 
reference state is of course independent of time. The stretch is defined by 

  λ =
l t( )
L

. 

When the length of a bar changes by a small amount from l  to l +dl , the 
increment in the natural strain is defined as 

  dε =
dl
l

. 

Thus, the rate of the natural strain is 

   dε
dt

=
dl t( )
ldt

. 

  
 
 Evolve homogeneous deformation in time.  As time goes on, a body 
undergoes a succession of homogeneous deformations, represented by the 
deformation gradient as a function of time, F t( ) .  Consider a set of material 
particles in the body.  When the body is in the reference state, the set of material 
particles form a straight segment, which we denote by a vector Y.  When the body 
is in the current state at time t, the same set of material particles forms another 
straight segment, which we denote by vector y t( ) .  The deformation from the 
reference state to the current state is homogeneous, so that the two vectors are 
related to each other through a linear map: 
  y t( ) =F t( )Y . 

The deformation gradient F t( )  changes with time.  At a given time, the same 
deformation gradient maps any straight segment in the reference state to the 
straight segment in the current state.   
 Note that the vector Y is independent of time, so that 

  
dy t( )
dt

=
dF t( )
dt
Y . 

The quantity dy t( ) /dt  is the rate of change of the straight segment of the same 

set of material particles. 
 
 Velocity gradient.  A body undergoes a time-dependent, homogeneous 
deformation. A material particle in the body is at position X in the reference state, 
and is at position x  in the current state at time t.  The velocity of the material 
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particle is  

  v =
dx t( )
dt

. 

If the body undergoes a rigid-body translation, all material particles in the body 
move by the same velocity.  If the body also rotates and stretches, however, 
different material particles in the body can move by different velocities.  Consider 
another material particle, whose position is X

0
 in the reference state and is x

0
 in 

the current state.  The displacement of this material particle is 

  v
0
=
dx

0
t( )

dt
.  

 Define a new tensor L by 
  v − v

0
=L x −x

0( )  

The tensor L is called the velocity gradient.  In general, the tensor is time-
dependent, L t( ) . 

  The distance between the two material particles in the current state is 
y = x −x

0
.  The definition of the velocity gradient is equivalent to 

  dy
dt

=Ly . 

 
 Exercise.  Show that 

  LF =
dF t( )
dt

. 

Given the deformation as a function of time, F t( ) , the above expression 

calculates the rate of deformation L t( ) . 

  
 Rate of deformation.  Consider a set of material particles.  At time t, 
the set of material particles forms a rectangular block.   At time t +dt , the same 
set of material particles forms a parallelepiped.  The rates of normal strain are 
    L

11
, L
22
, L
33

. 

The rates of shear strain are L
12
+L

21
, L
23
+L

32
, L
31
+L

13
.  These six quantities do 

not form a tensor.  However, we can define a tensor as 

  D
ij
=
1
2
L
ij
+L

ji( ) . 
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This definition is also written as 

  D =
1
2
L+LT( ) . 

The tensor D is symmetric and is known as the rate-of-deformation tensor.  The 
rate of deformation D is the symmetric part of the velocity gradient L. 
 
 Stretching a line of material particles.  Consider a set of material 
particles. At time t, the set of material particles forms a segment of a straight line.  
The homogeneous deformation of the body translates, rotates and stretches the 
segment, but the same set of material particles remains a straight segment at all 
time.  Represent the segment at time t by a vector y t( ) .  The vector obeys 

  dy
dt

=Ly . 

 Take dot product of the above equation with y, and we obtain that 

  
d y ⋅y( )
dt

=2yTDy . 

The above expression only contains the symmetric part of the velocity gradient.  
Write the straight segment as y = lm , where l is the length of the segment, and m 
is the unit vector along the segment.  The above equation is written as  

  dl
ldt

=2mTDm . 

This expression calculates the rate of natural strain of the line of material 
particles. 
 
 Spin.  Denote the anti-symmetric part of the rate of deformation by 

  W =
1
2
L −LT( ) . 

This tensor is known as the spin.  The spin does not distort the material, and does 
not cause any stress. 
 
 Power.  Consider a unit cube in the current state.  The velocity gradients 
L
ij

 represent the velocity of one face of the cube relative to another, and the true 

stresses σ
ij

 represent forces acting on the faces.  We obtain that 

  power inthecurentstate
volumeinthecurrentstate

=σ
ij
L
ij

. 

Because the true stress is a symmetric tensor, the above expression is equivalent 
to 
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  power inthecurentstate
volumeinthecurrentstate

=σ
ij
D
ij

. 

 
 Exercise.  Recall the expression 

  iKiK Fs δ=
statereferencetheinvolume

statecurenttheinwork . 

Note that the nominal stress is related to the true stress, and the deformation 
gradient is related to the displacement gradient.  Confirm that the above 
expression is consistent with the expression for the power density. 
 
 Viscosity.  Viscous flow is a material model with the following 
assumptions. The Helmholtz free energy does not change with deformation, and 
the stress is a function of the rate of deformation.  Thermodynamics requires that 
  σ

ij
D
ij
>0   

for any non-zero stress state.    
 A special case is the Newtonian fluids.  The components of the stress 
relate to the components of the rate of deformation as  
  σ

ij
=2ηD

ij
− pδ

ij
, 

where η  is the viscosity.  The material is assumed to be compressible: 
  D

kk
=0 . 
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EULERIAN FORMULATION OF INHOMOGENEOUS DEFORMATION   
 
 At time t, a material particle X  moves to position x.  We describe the 
deformation of the entire body in time by the function  
  x = x X,t( ) . 

The function ( )t,Xx  gives the place occupied by the material particle X at time t.  
The inverse function, ( )t,xX , tells us which material particle is at place x at time 
t.   
 The formulation in the previous pages uses the material coordinate X and 
time t as independent variables, a formulation known as the Lagrangian 
formulation.  The formulation results in initial boundary value problems that 
evolve in time various fields with coordinates of material particles in the 
reference state.  Here we develop the formulation using the spatial coordinate x, 
known as the Eulerian formulation. 
 
 Time derivative of a function of material particle.  Let Q be a 
physical quantity. For example, Q can be the temperature. The function 
Q = f X,t( )  represents the temperature of material particle X at time t.  The 

function Q = g x,t( )  represents the temperature of the material particle at place x 
at time t.  The two functions are related as 
  f X,t( ) = g x,t( ) ,   x = x X,t( )  
 The rate of change in temperature of the material particle is 

  
∂f X,t( )

∂t
. 

This rate is known as the material time derivative.  We can calculate the material 
time derivative by using the function g x,t( ) .  Using chain rule, we obtain that 

  
∂f X,t( )

∂t
=
∂g x,t( )
∂t

+
∂g x,t( )
∂x
i

∂x
i
X,t( )
∂t

. 

Recall that the velocity of the material particle X at time t is 

  v =
∂x X,t( )

∂t
. 

Thus, we can calculate the substantial time rate from 

  
∂f X,t( )

∂t
=
∂g x,t( )
∂t

+
∂g x,t( )
∂x
i

v
i
x,t( ) . 

 In the above, we have used three symbols to represent the temperature:  Q, 
f and g.  This practice is impractical when we deal with many different quantities.   
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We will use one symbol to represent the same quantity:  Q X,t( )  and Q x,t( ) .  
They represent the temperature as two functions different independent variables.  
Using this notation, the above change of variable is written as 

  
∂Q X,t( )

∂t
=
∂Q x,t( )

∂t
+
∂Q x,t( )
∂x
i

v
i
x,t( ) . 

 In the Lagrangean formulation, the acceleration is  

  a =
∂v X,t( )

∂t
. 

In the Eulerian formulation, the acceleration of a material particle is 

  a
i
x,t( ) =

∂v
i
x,t( )
∂t

+
∂v
i
x,t( )

∂x
j

v
j
x,t( ) . 

 
 Rate of deformation.  Let ( )t,xv  be the velocity field. Let x and x+dx  
be the places occupied by two material particles when the body is in the current 
state at time t.  The two material particles are the ends of a straight segment.  The 
vector v x+dx,t( )− v x,t( )  is the rate at which the straight segment changes.  The 
Taylor expansion gives  

   v
i
x+dx,t( )−vi x,t( ) =

∂v
i
x,t( )

∂x
j

dx
j
  

The velocity gradient is 

  L
ij
=
∂v
i
x,t( )

∂x
j

. 

The rate of deformation is 

  D
ij
=
1
2

∂v
i
x,t( )

∂x
j

+
∂v
j
x,t( )

∂x
i

"

#

$
$

%

&

'
'
. 

The vorticity is 

  W
ij
=
1
2

∂v
i
x,t( )

∂x
j

−
∂v
j
x,t( )

∂x
i

#

$

%
%

&

'

(
(

. 

 
 Conservation of mass.  In the Lagrange formulation, the nominal 
mass density is defined by 

  
statereferenceinvolume
statecurrentinmass=Rρ . 

That is, dVRρ  is the mass of a material element of volume.  A subscript is added 
here to remind us that the volume is in the reference state.   
 In the Eularian formulation, the true mass density is defined by 
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statecurrentinvolume
statecurrentinmass=ρ . 

That is, dvρ  is the mass of a spatial element of volume. 
 The two definitions of density are related as 
  dvdVR ρρ = , 
or 
  Fdetρρ =R . 
 The conservation of mass requires that the mass of the material element 
of volume be time-independent.  Thus, the nominal density can only vary with 
material particle, ( )XRρ , and is time-independent.  By contrast, the true density 
is a function of both place and time, ( )t,xρ .  The conservation of mass requires 
that 

  ( ) ( ) ( )[ ] 0,,, =
∂
∂+

∂
∂ tvt

xt
t

i
i

xxx ρρ . 

 When the material is incompressible, 1det =F , we obtain that 
  ( ) ( )tR ,xX ρρ = . 
 
 Balance of momentum.  The true stress obeys that 

  
∂σ

ij
x,t( )

∂x
j

+b
i
x,t( ) = ρ x,t( )

∂v
i
x,t( )
∂t

+
∂v
i
x,t( )

∂x
j

v
j
x,t( )

"

#

$
$

%

&

'
'

, 

in the volume of the body, and 
  ijij tn =σ  
on the surface of the body.  These are familiar equations used in fluid mechanics. 
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