Google Scholar can localize your search to library links
Search globally, go locally. Starting from Feb. 2006, Google Scholar offers links to find papers in your local library. See here for details.
Search globally, go locally. Starting from Feb. 2006, Google Scholar offers links to find papers in your local library. See here for details.
For many years, people accumulate personal collections of academic publications of interest in paper form. As such collections grow with time, more file cabinets and book shelves are needed for storage. First, space becomes a problem. Second, finding a specific paper could be a headache, even if the collections are well categorized.
As more and more publications become available online in recent years, people gradually switch to collect electronic versions, e.g. PDF files of papers. These files are often stored in local hard drives. Space is not an issue anymore. But again, locating a paper from hundreds of files in tens of folders still might be a heck of efforts.
Besides the difficulty in searching, other common shortcomings include:
Any better idea? Here comes Web2.0, which is all about online collaboration. Among the numerous tools enabled by Web2.0, CiteULike could be the one able to solve the above issues for us. A previous post in AMN explored the possibility to form online journal club based on CiteULike. Here is an example.
CiteULike is an online service to help academics to share, store, and organize the scientific literature. When you see a paper or a book on the web that interests you, you can click one button and have it added to your personal library. CiteULike automatically extracts the citation details (e.g., title, authors, abstract, and DOI). Currently, it supports more than 30 pubishing websites, many of which are of interest of mechanics community, e.g., ScienceDirect, AIP Scitation, Science, Nature, SpringerLink and Amazon.
Searching in your CiteULike library can be very easy. The surnames of all authors in your library are automatically tagged. You can also tag the papers and the books in your library as you like. All these tags appear in a tag cloud. Therefore, locating a paper in your library will be only one or two clicks away. Also, because your library is stored on the web server, you can access it from any computer.
You can also form a group, and integrate every member's own library to a group library. CiteULike also allows everyone to add note on papers or books. By combining the group and the note functions, you can easily form an online journal club among colleagues, collabarators, students, or any group with common interests, no matter how far away from each other.
Programmed by Richard Cameron and generously hosted by the University of Manchester in England, CiteULike is a free service to everyone. You just need to register to use its full functions. It all works within your web browser, no extra software is needed. So give it a try and enjoy.
Note: Nature publishing group also provides a similar service named Connotea. After experimenting both of them, I share the same feeling of many other users: while more attractive at the first sight, Connotea currently offer less flexible functions than CiteULike. I personally vote for CiteULike. You may want to share your experience with CiteULike or Connotea by commenting this entry.
Update on 4 July 2006:
Macroelectronics Journal Club, an online journal club focusing on flexible electronics and running on CiteULike platform, has been launched by www.macroelectronics.org. See a brief introduction here and detail announcement here.
Update on 14 July 2006:
By default, CiteULike stores links to papers. To get full access of a paper, you often need to locate the paper within the subscription of your institution, instead of its original link. By using a scalable bookmarklet, now localizing the paper links can be only as easy as one click away. See a recent iMechanica entry for details.
I was notified today that my Web site (http://www.ae.utexas.edu/~ruihuang/) has been included in the E-print Network (EPN). EPN is a fast-growing searchable scientific network of over 20,000 Web sites containing research conducted by researchers - from Nobel Laureates to post-doctoral students - who are offering e-prints of their work via the Internet.
Developed by the Office of Scientific and Technical Information (OSTI) to facilitate the needs of the Department of Energy (DOE) research community, E-print Network enhances dissemination of important research and helps to create opportunities for productive professional contacts.
E-print Network indexes over 900,000 e-prints. Most documents included in the network are recent scientific literature. Functions available to users include conducting full-text searches, searching for documents by contributing author, establishing a personalized alert service to keep abreast of new e-prints, and exploring laboratory Web sites for further details about selected research programs.
Once users find a paper of interest, they can download it from the site hosting the paper. This way you control distribution of your e-prints and can more readily track Web interest in your papers.
My page is listed under both Engineering and Materials Science.
Starting from January 2006, my group has been posting in Modeling Place as a blogspot to share research experience and ideas. We will gradually migrate to iMechanica for better publicity and more web functions.
Our first paper in biomechanics is featured as the cover of the Biophysical Journal. The paper is attached. Several freelance writers in biophysics have reported this paper in magazines and websites/blogs. This framework is very versatile and powerful, and we are now implementing more details/atomistic features into this phenomenological approach, and the follow-up paper will be submitted soon.
Abstract: The gating pathways of mechanosensitive channels of large conductance (MscL) in two bacteria (Mycobacterium tuberculosis and Escherichia coli) are studied using the finite element method. The phenomenological model treats transmembrane helices as elastic rods and the lipid membrane as an elastic sheet of finite thickness; the model is inspired by the crystal structure of MscL. The interactions between various continuum components are derived from molecular-mechanics energy calculations using the CHARMM all-atom force field. Both bacterial MscLs open fully upon in-plane tension in the membrane and the variation of pore diameter with membrane tension is found to be essentially linear. The estimated gating tension is close to the experimental value. The structural variations along the gating pathway are consistent with previous analyses based on structural models with experimental constraints and biased atomistic molecular-dynamics simulations. Upon membrane bending, neither MscL opens substantially, although there is notable and nonmonotonic variation in the pore radius. This emphasizes that the gating behavior of MscL depends critically on the form of the mechanical perturbation and reinforces the idea that the crucial gating parameter is lateral tension in the membrane rather than the curvature of the